Prof. Dr. rer. nat. Georg Rose

Prof. Dr. rer. nat. Georg Rose
Chair of Healthcare Telematics and Medical Engineering
Current projects
Universal Integrated Console for Ultra-High-Field Magnetic Resonance Imaging (UIC4UHFMRI)
Duration: 01.01.2024 to 31.12.2027
Ultra-high field magnetic resonance imaging is an advanced medical imaging technology and plays an important role in the study of brain function and neurobiology. It enables scientists to capture detailed images of the brain and track functional activity in real time. This can contribute to a better understanding of brain diseases, cognitive processes and neurological disorders. The technical goal of this project is to realize a universal integrated console for high-field MRI systems. The MRI console developed in this project surpasses all systems available commercially or as home-built systems to date and will enable OVGU and thus the state of Saxony-Anhalt to expand and secure its flagship activities in the field of MRI and neurosciences in the coming years. Furthermore, the project offers an excellent opportunity for integration into the
high-tech strategy of the state of Saxony-Anhalt with the establishment of semiconductor technology and microelectronics companies. With UIC4UHFMRI, the toolchain from design to system integration of modern semiconductor components is being established at OVGU.
This text was translated with DeepL
A portable in-field plant PET/MRI technology for the early crop stress detection
Duration: 01.11.2023 to 31.10.2026
Cereal growth and yield are one of the main issues in sustainable agriculture due to climate change. Based on its solid scientific results, the I3 consortium proposes to consolidate the first industrial platform for functional plant imaging for early detection of stress symptoms in plants. Compared to previous methods, a portable PET/MRI imaging system for plants simultaneously measures the space-time dynamics of metabolism and high-resolution plant morphology. This allows the extraction of new digital biomarkers correlated with early signs of plant stress before symptoms become obvious and irreversible. The I3 consortium has already developed and established the technology thanks to regional, national and European funding, and now aims to promote its adoption in sustainable agriculture and forestry. Two technology partners from transition regions (OVGU from Saxony-Anhalt, DE and Innomed from Molise, IT) will create an interregional technological production platform for the imaging system. VRVis, as a research institution from Vienna (AUS) will integrate an AI-based segmentation method for combined imaging. Bonifiche Ferraresi (IBF), a large Italian agricultural company based in the developed region of Emilia Romagna, will use the system in sustainable crop management and research. In the short term, I3 will integrate the existing PET/MRI system into a multimodal plant imaging device that is innovative compared to existing solutions. Deploying in agriculture-dependent developing regions is a huge investment in sustainable agriculture. In the long run, the EU value chain and competitiveness in agronomy will be strengthened. PET/MRI technology for crops is in line with European Green Deal goals as it optimizes agricultural strategies to improve sustainability. New employment in the field of agriculture is created and the project partners' developing regions are strengthened. The participation of recognized SMEs ensures economic and market suitability of the project.
Transfer room - transPORT Office
Duration: 01.07.2023 to 30.06.2026
The transfer space initiative transPORT aims to build and establish an urban medical technology high-tech eco-center with science, business, living and well-being ("W4") in Magdeburg's Port of Science. In addition to technological transfer, social and cultural innovations in particular are to be transferred to society using new formats. The complexity of the proposed T!Raum with the various projects in the steering and workshop area as well as the diverse partners requires a primary contact point for strategic project definition and coordination as well as for the sustainable networking of all workshops. The establishment of a transPORT office, the so-called transPORT Office, which acts as a central organizational unit for the entire transPORT under the leadership of a Chief Executive Officer (CEO), is therefore of essential importance.
This text was translated with DeepL
Simulation-based optimization of flow diverters for the treatment of intracranial aneurysms (SOFINA)
Duration: 01.04.2023 to 31.03.2026
The aim of the project is to research ways to optimize the fluid dynamic treatment of intracranial aneurysms with neurovascular stents (so-called flow diverters) in order to shorten the occlusion time, reduce the need for follow-up treatment and reduce the risk of tears in the vessel wall (ruptures). This highly interdisciplinary project is being coordinated by STIMULATE association member Acandis GmbH. Project partners are the University Clinic for Neuroradiology (Prof. Behme), the Institute of Mechanics (Prof. Juhre) and the Chair of Fluid Mechanics and Fluid Engineering (Prof. Janiga) at the University of Magdeburg as well as the STIMULATE research groups Image Processing (Prof. Saalfeld) and Medical Flows (PD Berg). The project is extensively supported by mediMESH GmbH.
This text was translated with DeepL
Completed projects
Research Campus STIMULATE - Funding Phase 2
Duration: 01.10.2020 to 30.09.2025
The Research Campus STIMULATE researches and develops image-based minimally invasive therapies for the treatment of oncological as well as neuro- and cardiovascular common diseases. It pursues a disease-oriented and holistic approach in which the entire clinical workflow (planning, imaging, patient access, navigation, required instruments, therapy monitoring and control) is considered
The new tailor-made therapy concepts are to be integrated into disease-specific "solutions", which are characterised by the following features:
- patient-friendly
- precise and therapeutically highly effective
- curative, low-radiation/radiation-free, patient-specific
- cost effective
In the field of oncology, the aim is to design image-guided therapies in such a way that they can become part of broad clinical routine. Research in this area is conducted in four core and cross-sectional topics, which focus on three major medical technology challenges in cancer of the liver, kidney, spine and lung:
- curative therapy: A0 ablation (removal of the complete tumour with safety margin)
- local and systemic surveillance: monitoring and prognosis of A0 ablation by integrating the cross-sectional topic Immunoprofiling
- development of dedicated interventional imaging systems
In the current second funding phase, only the oncological issues will be financed proportionately from the BMBF programme "Research Campus - Public-Private Partnership for Innovations".
The areas of neuro- and cardiovascular diseases are realised with own funds of the Research Campus partners and transfer central results of the first funding phase into clinical application:
- One-stop shop strategy for stroke treatment
- Rupture prediction of cerebral aneurysms as the main cause of haemorrhagic stroke
- completely radiation-free diagnosis of heart valve diseases combined with a patient-specific heart valve model as a basis for planning and therapy
Forschungscampus STIMULATE - Leitthema iCT
Duration: 01.10.2020 to 30.09.2025
Minimally invasive CT-guided treatments of oncological diseases are now part of everyday clinical practice, but this is accompanied by an increase in radiation exposure for patients and treating medical staff.
CT systems are currently used for this purpose, which were originally designed for diagnostic imaging, but whose requirements differ significantly from those expected of an interventional application.
For example, computed tomography interventions usually take longer than diagnostic imaging, there are medical staff in the room alongside the patient, and a therapeutic intervention is performed using special instruments.
The aim of the guiding theme iCT Solutions is to establish interventional computed tomography (iCT) as a curative therapy method for the minimally invasive image-guided treatment of malignant lung and liver lesions.
In the process, the workflow from planning to follow-up inspection is to be optimised in the following aspects, among others:
- Development of a new type of instrument tracking with the aim of automatic image following
- Use of a lightweight robot to guide an ultrasonic probe
- Improvement of patient access through the implementation of an intervention-specific table
- Research and establishment of intervention-specific imaging protocols to accelerate image acquisition while reducing the radiation dose
STIMULATE research campus - lead topic iMRI
Duration: 01.10.2020 to 30.09.2025
Magnetic resonance imaging offers high soft tissue contrast and the possibility of recording various physiological parameters, such as blood flow, diffusion and temperature. In addition, it offers any orientation of the image slices and does not use ionizing radiation. Despite these numerous advantages, interventional magnetic resonance imaging (iMRI) has not yet gained widespread acceptance as a holistic therapy solution. The main reasons for this are the non-standardized workflow (due to poor patient access, especially in closed MR systems and the intensive guidance required) and the lack of availability of MR-compatible instruments and devices.
The aim of the key topic iMRI Solutions is to establish interventional magnetic resonance imaging as a curative therapy method for minimally invasive image-guided treatment of oncological diseases and to develop and manufacture a dedicated interventional magnetic resonance imaging scanner. The aim is to drastically reduce the complexity of image-guided MRI procedures, improve patient handling and expand the therapy portfolio of interventional magnetic resonance imaging. In addition, the securing of A0 ablation, which is to be achieved through research into 3D thermometry to determine the necrosis zone, and research into non-thermoablative therapy methods for use in the MR environment represent central key aspects of the lead topic.
Different approaches are explicitly included (e.g. finding technical solutions, implementing innovative concepts and approaches in cooperation with renowned partners, sharpening the user-centered approach, setting up an iMRI use lab, accompanying health economic research, recording the patient-specific, individual biological response as part of the cross-sectional topic of immunoprofiling) in order to be able to take a holistic approach to finding solutions.
This text was translated with DeepL
STIMULATE research campus - cross-sectional topic of computational medicine
Duration: 01.10.2020 to 30.09.2025
Numerous data from various modalities are currently recorded as part of cancer therapy - from the initial diagnosis of the patient through to treatment and follow-up. For a treatment decision, this data must be evaluated and supplemented by the patient's anatomy and pathophysiology.
The aim of the cross-cutting topic of computational medicine is to research planning and therapy software that supports the treatment of tumors in the abdomen and thorax. Artificial intelligence (AI) techniques with a focus on deep learning (DL) will be used for medical image analysis (segmentation and classification) and suitable visualization concepts for intra-operative implementation will be researched.
On the one hand, a planning suite for minimally invasive CT and MRI procedures will be researched and developed to support the treatment of lung, kidney and liver metastases.
Furthermore, an AI-based ONKONET is being developed for the segmentation and classification of organs, tumors and risk structures as well as an AI-based THERAPYNET for the lead topics iMRI Solutions and iCT Solutions in order to predict the success of therapy by determining necrosis zones of liver and lung tumors. In addition to the parameters of the procedure itself, this also includes patient-specific information, which was extracted with the help of results from the cross-sectional topic of immunoprofiling.
This text was translated with DeepL
PETAL - Positron Emission Tomography for Agriculture and Life
Duration: 01.10.2021 to 30.09.2025
In order to guarantee food security, grain production must be adapted to the needs of the growing population and the demand for animal feed and biofuels. One of the current challenges is climate change. It causes abiotic and biotic stress in cereals, which has an impact on growth and yield. Using positron emission tomography, the EU-funded PETAL project will measure early changes in CO2 metabolism and water transport in wheat caused by stress. The unique data sets generated in the project will be analyzed and used to determine new measurable parameters that change in early phases of plant development due to stress. Subsequently, a platform will be developed that offers services to agriculture for early analysis of wheat growth.
This text was translated with DeepL
EMERGE: EKG-Signaldatenbank für MR-geführte Herzkatheter-Eingriffe und hämodynamisches Monitoring
Duration: 01.01.2020 to 31.12.2024
Bei Patienten mit Herzrhythmusstörungen werden häufig elektrophysiologische Untersuchungen
(EPU) zur Diagnostik und Therapie durchgeführt. In Deutschland sind dies ca. 50.000 Fälle pro Jahr (Herzbericht 2017). Ein wesentlicher Nachteil dieser unter Röntgenbildgebung durchgeführten Untersuchungen ist die Strahlenbelastung, die nicht nur für die Patienten, sondern insbesondere auch für das medizinische Personal kritisch ist. Aufgrund der Nachteile bestehen intensive Bestrebungen, die EPUs zur Diagnostik und Therapie von Herzrhythmusstörungen unter Magnetresonanztomographie (t\{RT) statt unter Röntgenbildgebung durchzuführen. Die MR-Bildgebung ist ein in der klinischen Diagnostik häufig eingesetztes strahlungsfreies bildgebendes Verfahren, das ein hohes Potential für bildgeführte minimalinvasive und kardiologische Interventionen besitzt. Neben den zahlreichen Vorteilen, die die MR- gegenüber der Röntgenbildgebung aufweist, existiert insbesondere für kritische Patienten im MRT ein wesentlicher Nachteil bei der Überwachung mittels Elektrokardiogramm (EKG). Ein grundlegendes Problem eines im MRT aufgezeichneten EKG sind die in dieser Umgebung auftretenden Störsignale, welche sich dem EKG-Signal direkt überlagern und damit die QRS-Detektion erschweren sowie auch eine morphologischen Analyse des EKG unmöglich machen. Insbesondere für EPUs wird jedoch ein MR-kompatibles l2-Kanal-EKG benötigt, welches bisher u.a. aufgrund der Störeinflüsse der MR-Bildgebung nicht existiert. Das Ziel des Projekts ist die Erstellung einer EKG- und IKG-Signaldatenbank bestehend aus einem 3 bzw. 12-Kanal-EKG (von MIPM GmbH) und IKG (CNSystems Medizintechnik GmbH) als Grundlage für die Evaluierung von Algorithmen. Die Möglichkeit, die Hämodynamik des Herzens nicht-invasiv und ohne den Einsatz nicht-invasiverTechnik zu ermitteln, ermöglicht eine erehebliche Verbesserung der Patientensicherheit während der MR-Bildgebung und MR-gestützten Interventionen. Somit ist der Einsatz in der klinischen Praxis sowohl bei MR-geführten elektrophysiologischen Untersuchungen (EPU) als auch für das Monitoring kritischer Patienten bei der MR-Bildgebung denkbar.
"COCOON" - aCOustiC Optimized hOusiNg
Duration: 01.06.2022 to 30.11.2024
The ZIM network INSTANT is primarily concerned with medical issues. Within the network, the COCOON R&D project focuses on reducing noise pollution during diagnostic and interventional image-guided procedures.
Various medical studies show that persistently high noise levels can lead to poor concentration, stress, memory impairment, a general reduction in performance and other symptoms, including burnout syndrome. Such stress and anxiety situations are detrimental to the recovery of patients and lead to longer treatment times and therefore increased costs. On the part of clinical/medical staff, noise pollution can lead to loss of concentration and treatment errors, for example during interventions lasting several hours or several consecutive interventions.
With many machines, the generation of loud noises cannot be prevented or can only be prevented by interfering with the existing structure. However, technical measures can be taken to hinder the propagation and transmission of noise and thus minimize disruptive noise emissions. The COCOON project aims to research processes for the design and manufacture of acoustically optimized housings for large medical devices, resulting in very high standards with regard to approval and the materials used.
Furthermore, the ambitious approach of researching a "diagnostic system" for recording the status of product functionality is being pursued. Early alerting in the event of malfunctions should minimize device failures and could contribute to product monitoring after the product has been placed on the market.
This text was translated with DeepL
RAYDIAX - Interventional computed tomography system for cancer treatment
Duration: 01.04.2021 to 31.03.2024
RAYDIAX is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) and the European Social Fund (ESF) as part of the "EXIST - Transfer of Research" initiative with the aim of transferring research results into commercial products. As a certified medical device manufacturer, RAYDIAX will develop and finalize a computer tomography system designed solely for minimally invasive operations. The company will develop hardware and software components, integrate them into a comprehensive overall system and market them. The results of the development work form the innovative core of a computer tomography system that enables a reduction in dose compared to conventional CT used for interventions, while at the same time increasing efficiency. The core expertise of the founders and thus the innovation lies in the areas of planning, navigation and assistance before and during the intervention, imaging and image reconstruction as well as the structure of the CT system. The RAYDIAX team is thus addressing the rapidly growing, socially and economically highly relevant market of CT-guided minimally invasive cancer treatments. The founding team emerged from the STIMULATE research campus and has access to a large network of clinical and technical opinion leaders. Leading global interventional radiologists, professors who provide technical and business management support, as well as experienced start-up advisors from the world of business provide advice.
This text was translated with DeepL
Volume-of-interest imaging in C-arm CT
Duration: 01.10.2021 to 31.12.2023
Background
Volume-of-interest (VOI) imaging allows for significant patient dose reduction. However, reconstructed images suffer from severe image artifacts due to the limited data acquisition. Yet, in practice there is typically unused data of the patient available.
Objective
Utilization of the available prior knowledge to increase image quality of VOI imaging or reduce dose, respectively
Methods
Usage of consistency conditions to incorporate prior data properly while maintaining and not overwriting information from VOI imaging acquisitions.
This is achieved by the registration of priors and the retrieval of further information from the limited data available.
Results
Image reconstruction from truncated projections supported by prior volume data offers good image quality while reducing patient dose. Final investigations still need to show how well the method works on clinical devices.
Conclusions
Extrapolation methods using solely consistency conditions to improve image quality do not work sufficiently stable, however incorporating available prior data enables good image results.
Originality
Usage of previously unused information enables patient dose reduction while maintaining sufficient image quality.
Keywords
CBCT, volume-of-interest imaging, truncation, prior knowledge, registration
C-arm imaging with few arbitrary projections
Duration: 01.05.2022 to 31.12.2023
Within the scope of interventions - particularly in the field of orthopedics - CT scans often have to be performed to track and control the position of an instrument or changes of a patient's position, the latter being typically restricted to a feed of the instrument or a slight displacement of the person's body.
Given the medical relevance of only the change in position of the bone structures, necessary information might be captured by just a few suitable projections.
Moreover and additionally to a prior CT scan of the body, the exact geometry of the applied instrument is well-known and may be used as a priori information.
This sub-project aims at developing methods to embed a few, newly acquired projections (potentially generated via a limited angle range) into or to respectively complement a set of already existing ones in order to obtain a complete and high-quality reconstruction of the current scene. Furthermore, usage scenarios for a robot-assisted imaging system applied to centrally support the procedure are to be addressed. In doing so, the robot is supposed to automatically exchange its surgical tool for an X-ray detector, to acquire a few projections, and to subseqeuntly continue its surgical main task.
Dynamic C-arm CT perfusion of the liver
Duration: 01.05.2022 to 31.12.2023
CT perfusion imaging by means of a C-arm based angiography system allows for intra-operative measurement of blood perfusion in the soft tissue of the human body. In case of the liver, such images can help, for example, to evaluate the success of tumour embolisation therapy as well as to estimate so-called "heat-sink effects” for precise planning of thermal tumour ablation.
In general, dynamic perfusion imaging using C-arm devices is a challenging task, particularly owing to the slow rotation speed of such devices, which results in temporally undersampled data. Recent advances in so-called model-based reconstruction algorithms (e.g. Bannasch et al.) have demonstrated great potential in the field of brain perfusion. While dynamic perfusion imaging is quite established for imaging the human brain, liver perfusion is not part of the clinical routine yet. This can be attributed to the insufficient image quality that is provided by conventional algorithms when applied to liver imaging without appropriate modifications.
Consequently, the main objective of this project is to solve this by adapting existing routines from brain perfusion to the specific liver requirements and by adding necessary components that address central issues of the problem, like …
- consideration of strong patient movement (especially due to breathing),
- dealing with severe truncation in the acquired projections (limited field of view), as well as
- handling the extensive computational load of the image reconstruction
thereby aiming at the
- development of suitable image reconstruction algorithms,
- integration of prior knowledge about involved processes, and
- (fast) implementation of all developed routines
to enable the assessment of perfusion parameters in the (human) liver.
KMU-innovativ joint project: 12-lead ECG for MR-guided cardiac catheterization and hemodynamic monitoring (EMERGE) - sub-project: Hemodynamic monitoring for cardiologic diagnostics in MRI
Duration: 01.05.2020 to 30.04.2023
The three-year project "EMERGE - 12-channel ECG for MR-guided cardiac catheterization and hemodynamic monitoring", a joint project between the research campus partners Mammendorfer Institut für Physik und Medizin GmbH (MIPM) , the Clinic for Cardiology and Angiology of the University Hospital Magdeburg A. ö. R. and the Institute for Medical Technology at OvGU, was launched at the STIMULATE research campus on May 1, 2020 as part of the BMBF's "KMU-innovativ Medizintechnik" call.ö.R. and the Institute for Medical Technology at the OvGU.
The project has two objectives: In addition to the development of a 12-lead ECG for MR-guided cardiac catheterization procedures, hemodynamic parameters for intraprocedural monitoring are to be derived from the ECG signal superimposed by the magnetohydrodynamic (MHD) effect.
A typical problem when recording and interpreting an ECG recorded in an MRI is the interference signals caused by the MRI. The superimposition of the actual ECG signal is essentially caused by two sources. Firstly, the static magnetic field of the MRI (0.5 - 3 Tesla) causes the MHD effect, which describes the interaction between the static magnetic field and the blood flow directed perpendicular to it. Secondly, the switched magnetic gradient fields required for MR imaging induce electrical voltages within the body and the ECG cables, which are also superimposed on the ECG signal (gradient artefacts). To solve these problems, both the appropriate hardware for recording the 12-lead ECG and methods and algorithms that enable filtering of the various interference signals must be developed. The fact that the interference caused by the MHD effect occurs synchronously with the heart rhythm is particularly challenging from a technical point of view.
The second main project objective is the development of a hemodynamic monitoring method based on the MHD signal. For the development of the MHD-based method, the IKG (impedance cardiography) signal will initially be used as a reference. This reference will be used to determine both relative and absolute hemodynamic parameters. The non-invasive determination of these parameters, based on the MHD signal, would enable hemodynamic monitoring of critical patients during an MRI examination.
This text was translated with DeepL
Experimental computer tomograph
Duration: 01.03.2020 to 30.04.2022
The proposed experimental CT serves as the core of research into CT-guided minimally invasive therapy methods that are not possible with the current state of science and technology. The CT is characterized by optimal patient access and dedicated imaging X-ray components, tailored to the requirements of minimally invasive tumor therapy. This new type of minimally invasive therapy is intended to enable a paradigm shift in cancer therapy in the future by establishing a curative therapy approach. One of the components for achieving this goal is the experimental CT. This will help Magdeburg to achieve scientific excellence and global visibility in the field of medical imaging.
This text was translated with DeepL
Industry and clinic platform - conception phase
Duration: 01.11.2020 to 30.04.2022
The 6-month conception phase of the industry-in-clinic platform initiated by the cooperation partners Raylytic GmbH, University Clinic for Radiology and Nuclear Medicine Magdeburg with LIAM GmbH and the STIMULATE research campus began on October 1, 2020. The cooperation partners jointly took advantage of the Federal Ministry of Education and Research's announcement "Establishment of industry-in-clinic platforms for the development of innovative medical products". This announcement is derived from the recommendations for action of the national strategy process "Innovations in Medical Technology" and is aimed at the challenge of creating innovative research structures in medical technology.
The idea of the platform to be set up in the conception phase is to provide providers of medical devices for diagnostic and therapeutic image-guided procedures with a central organizational unit with access to clinical capacities, expertise and information for their product development. Using the platform creates a development cycle that considers the product in its overall context beyond the invention period. With professional project, quality and risk management, all services provided are bundled, whereby the evaluation and processing of project results supports areas of responsibility that companies typically have to coordinate themselves. This eliminates barriers to innovation and accelerates the product development and approval processes from conception to product or market surveillance.
At the end of the conception phase, a full project application with a business plan is submitted to the BMBF in order to enter a possible three-year testing phase. The testing phase includes so-called model projects, through which the platform's services are extensively tested and evaluated on the real market.
This text was translated with DeepL
LTS magnet for neonatal MR tomography
Duration: 01.06.2021 to 30.04.2022
Within the scope of the R&D project, a demonstrator for a conductively cooled and cost-effective electromagnet made of LTS special wire for the neonatal field is to be developed by the cooperation partners Neoscan Solutions and Research Campus STIMULATE at Otto von Guericke University.
Magnetic resonance imaging (MRI) has proven successful in hospitals as a diagnostic imaging procedure without the exposure to potentially harmful ionising radiation. Magnetic fields, which are generated with the help of strongly cooled electromagnets consisting of coils, help to resolve the body anatomy and physiological processes. Clinical MRI devices currently have cooling systems using liquid helium, which requires safety-related and costly structural precautions.
A cost-effective alternative for cooling MRI devices without liquid helium is the so-called conductive cooling, which could replace cooling with liquid helium in the future with the help of powerful cold heads together with cold-conducting copper strands. To minimise the quench risk of conductive cooling, which is not yet used in clinical practice, an expensive special HTS (high temperature superconductor) wire is used for the electromagnet, among other things. An alternative could be electromagnets with LTS (low temperature superconductor) wire, but these require reliable cooling, which is why MRI machines equipped with LTS magnets are currently still operated with liquid helium.
The needs of potential customers of an MRI device with high field strength and high magnetic field homogeneity at a manageable cost and resource input would close the substitution of helium cooling with conductive cooling and additionally the use of a low-cost LTS special wire for the electromagnet. The project partners Neoscan Solutions GmbH and Otto von Guericke University want to realise this innovative, conductive-cooled MRI solenoid in complementary cooperation at the Research Campus STIMULATE.
MEMoRIAL-M1.11 | C-arm imaging with few arbitrary projections
Duration: 01.02.2018 to 30.04.2022
Within the scope of interventions - particularly in the field of orthopedics - CT scans often have to be performed to track and control the position of an instrument or changes of a patient's position, the latter being typically restricted to a feed of the instrument or a slight displacement of the person's body.
Given the medical relevance of only the change in position of the bone structures, necessary information might be captured by just a few suitable projections.
Moreover and additionally to a prior CT scan of the body, the exact geometry of the applied instrument is well-known and may be used as a priori information.
This sub-project aims at developing methods to embed a few, newly acquired projections (potentially generated via a limited angle range) into or to respectively complement a set of already existing ones in order to obtain a complete and high-quality reconstruction of the current scene. Furthermore, usage scenarios for a robot-assisted imaging system applied to centrally support the procedure are to be addressed. In doing so, the robot is supposed to automatically exchange its surgical tool for an X-ray detector, to acquire a few projections, and to subseqeuntly continue its surgical main task.
MEMoRIAL-M1.1b | Dynamic C-arm CT perfusion of the liver
Duration: 01.03.2019 to 30.04.2022
CT perfusion imaging by means of a C-arm based angiography system allows for intra-operative measurement of blood perfusion in the soft tissue of the human body. In case of the liver, such images can help, for example, to evaluate the success of tumour embolisation therapy as well as to estimate so-called "heat-sink effects” for precise planning of thermal tumour ablation.
In general, dynamic perfusion imaging using C-arm devices is a challenging task, particularly owing to the slow rotation speed of such devices, which results in temporally undersampled data. Recent advances in so-called model-based reconstruction algorithms (e.g. Bannasch et al.) have demonstrated great potential in the field of brain perfusion. While dynamic perfusion imaging is quite established for imaging the human brain, liver perfusion is not part of the clinical routine yet. This can be attributed to the insufficient image quality that is provided by conventional algorithms when applied to liver imaging without appropriate modifications.
Consequently, the main objective of this project is to solve this by adapting existing routines from brain perfusion to the specific liver requirements and by adding necessary components that address central issues of the problem, like …
- consideration of strong patient movement (especially due to breathing),
- dealing with severe truncation in the acquired projections (limited field of view), as well as
- handling the extensive computational load of the image reconstruction
thereby aiming at the
- development of suitable image reconstruction algorithms,
- integration of prior knowledge about involved processes, and
- (fast) implementation of all developed routines
to enable the assessment of perfusion parameters in the (human) liver.
MEMoRIAL-Module I: Medical Engineering
Duration: 01.09.2016 to 30.04.2022
Medical imaging encompasses a versatile toolkit of methods to generate anatomical images of a single organ or even the entire patient for diagnostic and therapeutic purposes. Radiation-based imaging technologies are of inestimable importance and hence performed in daily clinical practice.
Electromagnetic radiation may, however, cause undesirable side effects. Consequently, methods allowing for dose reduction are expected to prospectively come into focus. This may specifically hold for patients, who need to be scanned periodically for therapy and/or health progress monitoring.
Instead of performing an entire scan per session, prior knowledge derived from preexisting multimodal image data sourcing, anatomical atlases, as well as mathematical models may be integrated - the latter reducing radiation dose and scan duration thus finally saving health expenditures.
In order to do so, available images and data need to be updated based on newly acquired subsampled data.
The application of prior knowledge may furthermore advance minimally invasive interventions by means of intraoperative image acquisition. Within this context, consecutive scans usually show a high degree of similarity while differing only in probe position and respiratory organ motion. Lower radiation loads vs. significant increases in image frame rate may result when spotting those similiarities based on formerly acquired image information.
The integration of prior knowledge therefore holds a great potential for improving contemporary interventional procedures - especially in the field of interventional magnetic resonance imaging (IMRI).
Graduates in medical imaging science, medical engineering or engineering, computer, and natural science will have the opportunity to work with high-tech diagnostic devices such as x-ray examination and computed tomography (CT), state-of-the-art single-photon emission computed tomography (SPECT) and positron emission tomography (PET) within a structured 4-year/48-month PhD track.
Modality Medical Explorer - Development of a process to improve the medical diagnostic imaging of X-ray devices and its technical implementation (MME)
Duration: 01.08.2019 to 31.01.2022
The central aim of the project is to achieve optimum image quality for X-ray images in diagnostics with the lowest possible dose. In addition to minimizing radiation exposure for patients, a continuous improvement process in conjunction with documented quality assurance is to be introduced in the radiology sector. At the same time, the desired improved image quality will make doctors' work easier and lead to more accurate or earlier diagnoses and fewer misinterpretations of images, resulting in more satisfied or healthier patients and a reduction in the burden on health insurance companies.
One advantage of the planned MME-BOX is the practical testing, the agile further development (inclination) and the continuous improvement of these processes (iterations), which should enable the (complication-free) expansion of the system not only in Saxony-Anhalt or the Federal Republic of Germany.
The realization of the research project in cooperation with the company PergamonMED GmbH and Otto von Guericke University (OVGU) takes place at the research campus STIMULATE.
This text was translated with DeepL
MEMoRIAL-M1.3 | Use of prior knowledge for interventional C-arm CT
Duration: 01.07.2017 to 31.12.2021
A C-Arm CT system, as compared with CT systems, is more sensible to the scattered radiation. This acquired scattered radiation leads, unavoidably, to a degradation of the reconstructed object's quality.
The presence of metallic implants such as platinum coils or clips additionally impairs image qualities by causing beam-hardening and scattering effects.
Every bit of information - that we call 'prior knowledge' - possible to being safely introduced during the image reconstruction process or post-processing can help to improve image qualities, reduce the overall acquisition time, or reduce the dose acquired by the patient.
In this project, prior knowledge will thus be used in order to improve C-Arm CT images interferred by scattering artefacts due to the presence of metallic implants. Supplementary information about the shape of metallic implants or the patient him/herself (e.g. obtained using a preparative planning CT) will consequently allow for an improved artefact compensation as well as image fidelity in the vicinity of implants.
Model-based CT perfusion measurement (TST method) using an angiographic C-arm
Duration: 01.03.2019 to 31.12.2021
Due to the slow projection data acquisition, the speed of C-arm based CT imaging is too slow to allow a full dynamic perfusion measurement. A model-based time separation method (TST) developed and patented in our group can solve this problem. Within this project, this method will be further developed in order to be used in a clinical routine.
This text was translated with DeepL
MEMoRIAL-M1.5 | Volume-of-interest imaging in C-arm CT
Duration: 01.07.2017 to 30.09.2021
Background
Volume-of-interest (VOI) imaging allows for significant patient dose reduction. However, reconstructed images suffer from severe image artifacts due to the limited data acquisition. Yet, in practice there is typically unused data of the patient available.
Objective
>> Utilization of the available prior knowledge to increase image quality of VOI imaging or reduce dose, respectively
Methods
>> Usage of consistency conditions to incorporate prior data properly while maintaining and not overwriting information from VOI imaging acquisitions
This is achieved by registration of prior and the retrieval of further information from the limited data available.
Results
Image reconstruction from truncated projections supported by prior volume data offers good image quality while reducing patient dose. Final investigations still need to show how well the method works on clinical devices.
Conclusions
Extrapolation methods using solely consistency conditions to improve image quality do not work sufficiently stable, however incorporating available prior data enables good image results.
Originality
Usage of previously unused information enables patient dose reduction while maintaining sufficient image quality.
Keywords
CBCT, volume-of-interest imaging, truncation, prior knowledge, registration
R&D RF system for neonatal MR tomography
Duration: 01.04.2018 to 30.04.2021
The central aim of this project is the pre-development of RF coil and patient positioning demonstrators for a compact 1.5T magnetic resonance imaging scanner that is suitable for installation outside a radiology department close to the patient (for example in an intensive care unit for newborns and premature babies). Due to the constant availability of imaging, patients can be examined when it is appropriate for them and the need for - sometimes very risky - transportation is significantly reduced.
The technical objectives include the construction of a transmitting/receiving coil with a small wall radius as well as concepts for SAR monitoring, the integration of an incubator and patient positioning and monitoring.
The research project is being carried out at the STIMULATE research campus in collaboration with Neoscan Solutions GmbH and Otto von Guericke University (OVGU).
This text was translated with DeepL
Establishment of industry-in-clinic platforms for the development of innovative medical products
Duration: 01.10.2020 to 31.03.2021
The implementation phase of the project served to establish the industry-in-clinic platform "mediMESH - clinical insights" as a central point of contact for medical technology companies in the rapidly growing market for image-guided diagnostic and interventional procedures and the five pilot projects agreed with various partners.
The aim of "mediMESH - clinical insights" is to offer a service portfolio that marketers and suppliers need in order to develop innovative products efficiently and accurately in the clinical environment. To this end, the platform uses the STIMULATE research campus' infrastructure of imaging devices and services, which is unique in Germany and currently comprises 5 national and 3 international institutes. In addition, the collaboration with several university hospitals ensures access to maximum regular care providers with close links between research and patient care.
This text was translated with DeepL
STIMULATE research campus -> focus on medical technology
Duration: 01.01.2016 to 31.12.2020
The STIMULATE research campus will receive funding from the European Structural and Investment Fund (ERDF) as part of the Saxony-Anhalt Science Priorities initiative until the end of 2020. Over the next five years, these funds will be used to strengthen and expand the STIMULATE research campus both thematically and structurally and, in particular, to organize the exploitation and transfer of the results.
In the STIMULATE research campus project focusing on medical technology, the European Structural and Investment Funds will be used for the following measures:
New fields of application will be developed to meaningfully complement the research areas being worked on in STIMULATE. In terms of content, the focus is on areas such as cardiology, thoracic surgery, urology and ENT. To this end, the OVGU regularly issues internal calls for projects whose thematic focus lies in the STIMULATE research agenda, i.e. image-guided minimally invasive diagnostic and therapeutic methods. Research projects are selected on the basis of short proposals, which are assessed by the STIMULATE research campus board according to a transparent set of criteria.
As part of this thematic expansion, the research and laboratory infrastructure at the research campus will also be expanded.
In addition to direct research funding, measures will be financed that serve the further development and expansion of transfer activities in STIMULATE. As part of the funds provided, the research campus' scope of action in this area is to be expanded and made more flexible. The aim is to generate economic effects in the state of Saxony-Anhalt and to tap into sources of income in order to bear part of the transfer expenditure independently in the future. In the long term, this should not only serve to support the financing of research activities, but also to stabilize STIMULATE.
To support the research work, overarching measures will also be funded as part of a central project. Additional funds will also be used for national and international networking as well as the establishment and continuation of collaborations in the scientific and economic areas of the STIMULATE research campus.
This text was translated with DeepL
Perfusion imaging using C-Arm CT system
Duration: 01.01.2018 to 31.12.2020
Perfusion imaging is an important diagnostic and treatment decision-making modality in acute brain stroke management. Thrombectomy, potentially life saving treatment, that comes together with increased risk profile, could be indicated for certain patients solely based on the perfusion scan. The aim of this project is to evaluate applicability of the perfusion imaging for acute brain stroke scanning on C-Arm CT system. This approach could be beneficial for the acute stroke patients as the C-Arm CT device is often a part of the equipment of the operating theater. Having perfusion scanning option on the site of the neurosurgery could spare time and shorten the decision-making process.
The rotational speed of the C-Arm CT device is slower in comparison to the conventional CT rotation. When estimating the velocity of the contrast agent distribution during the perfusion scan, the speed of the rotation of the C-Arm CT device could not be neglected. Therefore, we apply so called time separation technique, where we approximate contrast agent dynamic by the scalar function of the time and fit the data acquired from the scan to the preselected basis of these functions. It has been shown recently, that when the basis functions are chosen based on the prior knowledge, for example by using singular value decomposition of the data from CT perfusion scans, then this method could be used to reliably reconstruct the time attenuation curves.
The aim of this project is to develop the software tools for analysis of C-Arm CT perfusion data with arbitrarily chosen basis functions including those based on the prior knowledge and analytic ones. The software will include image registration of projection data, fitting linear models to those data, obtaining coefficients of the basis functions in projections, cone beam reconstruction of these coefficients into the volumes and the visualization of perfusion parameters (CBF, CBV, MTT, TTP, …). Programs will be implemented in C++ using multi threading approaches.
Further important part of the project is the testing of the algorithms and described methods on the software and hardware perfusion phantoms and evaluating the data. We use existing software brain perfusion phantom and the hardware phantom that was developed on OVGU. Final aim is the transfer of these results to the clinical setting and evaluation of the behavior of these algorithms on real clinical perfusion data.
Collaborative project: Modular CT device for the diagnosis of children (KIDS-CT) - subproject: A CT system with individual components especially for children.
Duration: 01.10.2017 to 30.09.2020
The central goal of this project is the development of a CT platform with open interfaces for hardware and software and a modular structure. This modularity refers to both the internal CT structure (e. g. exchangeable electronic modules for processing high-speed signals) and the periphery (connection of additional modalities such as optical 3D imaging). This high degree of flexibility will enable a quick adaptation to different requirements and application scenarios. The open interface structure plays a central role in this context, allowing future users to develop and use their own extensions - both hardware and software. This is particularly important for research institutions and companies striving to develop their own products. The planned open structure and the core component of multimodality make it possible to pursue and implement completely new approaches - e. g. for artifact and dose reduction. In the area of dose reduction and shorter scanning times, innovative methods are being implemented, some of which have already been developed at the STIMULATE research campus in Magdeburg.
Pediatrics is an exemplary clinical application in the KIDS-CT project. In this case, CT offers an irreplaceable diagnostic added value for polytraumas, pulmonary and congenital diseases as well as diseases of the bony system. Therefore, innovations for reducing the radiation dose should be pursued for this field of application. Existing methods must be adapted to the physical conditions of children.
The planned project will be carried out within the STIMULATE research campus. Within the scope of the project, the Institute for Medical Engineering (Prof. Rose) of the Otto-von-Guericke-University (OVGU) and Dornheim Medical Images GmbH will take over the operational project management of the entire project on behalf of the industry.
Next Generation of Surgical Simulators for Surgical Planning, Training and Education
Duration: 01.09.2019 to 31.08.2020
The aim of the project "Next Generation of Surgical Simulators for Surgical Planning, Training and Education" is to prepare an EU application in the field of "Health, demographic change and well-being". The aim is to apply for a Marie-Sklodowska Curie action, more precisely an ITN (Innovative Training Network). The applicants share the opinion that the improvement of surgical training is becoming more and more important in surgery. As patients get older, these procedures often become more complex and risky. Surgical simulators on today's market cannot reflect the reality and complexity of surgery, nor are they at an acceptable price level. The planned EU project aims precisely at this problem. An open-source framework for the simulation of surgical interventions is to be developed, which can be extended by research institutions and companies and used scientifically and commercially.
RadiologiX - Research into methods for the first precise, objective and fully automated analysis of spinal radiology image data
Duration: 15.08.2017 to 14.08.2020
Diseases of the spine and associated complaints represent one of the greatest health economic challenges of an increasingly ageing society. The state of Saxony-Anhalt is disproportionately affected due to its demographic development. A large number of current publications reveal that a valid, objective and reliable radiological analysis of the spine in everyday clinical practice is a key prerequisite for the effective diagnosis and treatment of spinal disorders.
Precise analysis methods are urgently needed for evidence-based diagnosis and treatment and as an essential contribution to clinical research. The aim of this project is therefore to research methods for patient-friendly, automated analysis of radiological image data that lead to precise and objective determination and visualization of clinically highly relevant parameters in all anatomical planes. In the medium term, the results of this research project should lead to a medical software platform which, when integrated into everyday clinical practice, will allow doctors to automatically perform a comprehensive functional and morphological characterization of the patient using standard X-ray images.
This text was translated with DeepL
The pre-development and development of an actively shielded, superconducting magnet for MR tomography
Duration: 20.07.2017 to 19.07.2020
The technological concept and development goal of the joint project is the preliminary development of a compact and shielded magnet based on a high-temperature superconductor (HTS), with specifications regarding field strength, field homogeneity and temporal field stability - sufficient for high-quality, clinical MR imaging of free and bound protons.
This text was translated with DeepL
Home training for the treatment of cognitive disorders
Duration: 01.01.2020 to 28.02.2020
The cost pressure on rehabilitation clinics means that stroke patients are discharged from the clinic after 3-4 weeks and further therapy is provided by neuropsychologists and occupational therapists in private practice. However, the intensity of treatment required for efficient follow-up therapy is no longer guaranteed after discharge from the rehabilitation clinic under current conditions. In order to achieve therapeutic effects, the therapy started must be continued with intensive, preferably daily training.
The aim of this research project is to develop a system for the therapy of cognitive disorders for patients after a stroke in home training. For this purpose, user interfaces with new interaction and visualization techniques are to be developed. Furthermore, studies will be carried out to test whether reward and motivation techniques from the field of computer games can be transferred to the new therapy software. One element of the motivation and reward strategy, for example, is the appropriate presentation of the patient's performance data.
The project is a collaboration between the STIMULATE research campus at Otto von Guericke University, Leipzig University Hospital and Hasomed GmbH.
This text was translated with DeepL
Automated Online Service for the Preparation of Patient-individual 3D Models to Support Therapy Decisions
Duration: 01.11.2016 to 31.01.2020
To provide hospitals with tools for the preparation of patient-individual 3D models of organs and pathologic structures, an automated online service shall be developed in this research project in co-operation with the company Dornheim Medical Images. Therefore, a clinical solution using the example of oncologic therapy of the prostate will be investigated. In this context, the Computer-Assisted Surgery group develops techniques for improved image segmentation and human-computer interaction.
STIMULATE research campus -> Brain-Machine Interfaces (BMI) research group
Duration: 01.01.2015 to 31.12.2019
The Brain Machine Interfaces (BMI) research group is concerned with the development and improvement of the central components of a BMI, including the development of a bio- and MR-compatible, minimally invasive implantable microelectrode array. The aim is to obtain high-quality signals and drastically reduce patient stress (thanks to minimally invasive implantability) compared to conventional electrode grid implantation. To ensure the best possible signal acquisition, the optimal placement of the electrodes is fundamental. The methods required for this are being investigated. The central interface between data acquisition and the control of a device is signal processing. The aim is to reliably and robustly recognize the patient's intentions from the measured brain signals. In addition to adapting and optimizing existing algorithms, the focus is on developing new methods for classifying the signals. Particular attention is paid here to the Hidden Markov Models known from speech recognition. In addition, the research group is also developing a miniaturized system for recording brain activity using ear electrodes. The holistic concept, from the electrode design and measurement electronics to the implementation of a suitable smartphone environment, provides a practice-oriented overview of the majority of issues arising in the context of BMIs.
This text was translated with DeepL
STIMULATE Research Campus -> C-Arm Imaging Research Group (NB)
Duration: 01.01.2015 to 31.12.2019
In the Research Group (FG) NB of the STIMULATE research campus, C-arm imaging is being researched with the aim of expanding the C-arm to a fully-fledged imaging modality for stroke diagnosis directly in the operating room.
The envisaged one-stop store strategy is intended to save stroke patients the time-consuming transportation between the operating theatre and CT. "Time is brain!" - Faster treatment can greatly increase the chances of successful treatment for patients.
New methods are being researched and implemented that not only improve imaging on the C-arm (especially 3D/3D+time), but can also save radiation dose for the patient. The investigation of iterative reconstruction methods is a main focus of the research group. Furthermore, increasing the visibility of neurovascular implants (e.g. stents/flow diverters) in 2D fluoroscopy and 3D X-ray imaging is the focus of the FG.
This text was translated with DeepL
STIMULATE research campus: MR Tools research group
Duration: 01.01.2015 to 31.12.2019
The MR Tools research group is subordinate to the "Oncology" focus area, which deals with the minimally invasive image-guided therapy of metastases of the liver and spine. Liver tumors are to be treated using MRI imaging, which is to be used for positioning the instruments and monitoring the therapy. The MR Tools research group is developing, implementing and evaluating innovative concepts for the hardware components required for this based on the requirements of the clinical partner.
Within WP 1, a "MR-compatible ablation system" is to be researched, which allows continuous monitoring of the ablation process based on MR imaging during operation and guarantees the same ablation efficiency as commercial MR-unsuitable systems. Important aspects here are the choice of materials and the design of the electronic components, so that they fulfill their function in the strong magnetic field on the one hand and do not interfere with the sensitive measuring system of the MR scanner on the other. In addition, the limited space available in the MRI scanner must be taken into account in order to allow the applicators to be inserted into the patient within the MRI scanner.
The AP 2 aims to develop an "interventional MR coil". This should ensure optimal access to the surgical field and high image quality at the same time. Research is being carried out in close cooperation with clinical partners. This allows early consideration of the interventional workflow in the development process.
Optimized patient access is also required in order to be able to perform the intervention in a so-called wide-bore MRI. To this end, WP 3 is researching "patient positioning". The aim here is an interoperable and modular design that can also be adapted to future intervention scenarios.
This text was translated with DeepL
STIMULATE research campus -> Tools MR (OT) research group
Duration: 01.01.2015 to 31.12.2019
The aim of this sub-project is to provide an MR-compatible ablation system for tumor therapy and to develop a concept for an ablation system for the local therapy of liver metastases under MR imaging based on the clinically oriented specifications and the technical requirements of MRI. The individual components of this system will be implemented and evaluated as a complete system in phantom and animal studies. Using a commercial ablation system, qualitative and quantitative verification measurements of the ablation system to be developed will be made possible. Dependent technical developments (e.g. thermometry, ablation planning system) can be transferred to clinical practice in a timely manner.
This text was translated with DeepL
INKA "Catheter Technologies" - Imaging sub-project
Duration: 15.12.2014 to 15.12.2019
The INKA Transfer Initiative "Catheter Technologies" researches and develops medical components and systems for image-guided minimally invasive procedures. The aim is to provide the technical prerequisites for innovative endovascular therapies for aneurysms.
Within this sub-project, the image quality of the flat-panel detector-based C-arm angiography system is optimized with regard to the visibility of stents and coils used for the treatment of cerebral aneurysms. The focus is on iterative reconstruction procedures and the compensation of beam hardening and metal artefacts, which severely impair the imaging of metallic implants.
This text was translated with DeepL
Endowed professorship INKA-Transfer
Duration: 01.12.2014 to 30.11.2019
The BMBF-funded INKA transfer project Catheter Technologies researches and develops medical components and systems for image-guided minimally invasive procedures. A corresponding junior research group with 5 scientists is headed by the professorship endowed by the business partners. Medical technology entrepreneur and TU Munich Fellow Michael Friebe was appointed to the "Intelligent Catheter" professorship at Otto von Guericke University in Magdeburg.
This text was translated with DeepL
FLEXtronic - start-up laboratory for flexible electronics
Duration: 01.10.2016 to 30.09.2019
As part of the ERDF-funded initiative "ego.-INKUBATOR", the establishment of the incubator "FLEXtronic - Start-up laboratory for flexible electronics" (FKZ IK 05/2015) was approved.
The laboratory will have all the necessary components for the design, production and evaluation of flexible printed circuit boards for a wide range of applications. During the three-year funding period, OVGU students and employees interested in founding a company can use the laboratory to implement and test their ideas in the field of electronics development. Participants receive continuous support from a research assistant and the OVGU's Transfer and Start-up Center (TUGZ). In this way, advice on both technical and business management issues can be guaranteed in order to familiarize the participants with entrepreneurial thinking and increase the success rate of the subsequent spin-off.
This text was translated with DeepL
MEMoRIAL-M1.1a | Model-based reconstruction methods for CT perfusion imaging
Duration: 01.01.2017 to 30.09.2018
A C-arm based angiography system such as the Siemens Artis zeego is a slowly rotating imaging system that causes a low acquisition rate in time. Given its integrated flat panel detector and X-ray source, a C-arm CT is, however, an appropriate angiographic device for perfusion imaging.
Angiography itself implies a dynamic 2D monitoring of a contrast agent's distribution right on injection into, for instance, organic tissue and vessels. The reconstruction of an accurate high-dimensional 4D computed tomography (CT) based on such temporally under-sampled 3D data (i.e. dynamically acquired / sampled 2D projections) while striving for minimal computational costs consequently constitutes the 'bottleneck' in application.
The general objective of this project is, therefore, to provide a fast and accurate algorithm for CT perfusion imaging by making use of prior knowledge.
Robotic assistance in spinal surgery
Duration: 01.07.2015 to 30.06.2018
The aim of the project is the installation and commissioning of a robotic arm and, in particular, the functional integration of the robot with the angiography system. One focus of the work is the registration of the two coordinate systems of the robot and the angiography system. An analysis and evaluation of the accuracy of the positioning of an instrument by the robot according to the planning, based on the images of the angio and finally the identification of errors and the optimization of the setup represent further work packages.
This text was translated with DeepL
Dynamic perfusion
Duration: 01.06.2015 to 31.05.2017
In addition to the cerebral blood volume (CBV), the dynamic perfusion parameters (CBF, MTT, TTP) provide very important information for the complete assessment of the tissue condition and the possible success of treatment in the event of a stroke. The company SIEMENS has recently developed a dynamic perfusion protocol for perfusion imaging using angiography systems, which makes it possible to perform time-resolved perfusion measurements. Initial simulations and also (published) results from animal experiments in the Experimental Factory have shown that it should be possible to record the dynamic perfusion of brain tissue using FDCT in the catheter laboratory. By using the same device, the interval between diagnosis and time-critical treatment can be significantly accelerated.
The aim of this project is to investigate the extent to which the developed measurements of dynamic perfusion using FDCT can be carried out in the angiology laboratory and help in the diagnosis of stroke. To this end, a phantom is to be developed that allows the experiments to be carried out reliably and reproducibly on a physical model.
This text was translated with DeepL
Visualization station for high-precision orthopaedic procedures
Duration: 01.03.2015 to 28.02.2017
Sub-project: Development of the image-processing elements of the real-time visualization station
In orthopaedic surgery, the task is often to precisely insert an implant into a bone. Medical navigation systems are used for this purpose, which continuously track the position of the instrument and the bone - to which markers are attached - with the help of a tracking system. The implant is then superimposed in the correct position and orientation on a preoperatively recorded 3D CT data set, giving the impression of real-time imaging. Displacements of the bones and markers caused by the operation lead to major inaccuracies in these navigation systems. This can be remedied by using an intraoperative CT, which records a current 3D data set. The disadvantages are the additional radiation exposure and the considerable additional costs of such a CT. The aim of this project is to develop a visualization station that updates the preoperative 3D image with the help of X-ray images - which are created intraoperatively using a C-arm available in every operating theatre - and precisely superimposes implants and bones onto this image.
This text was translated with DeepL
Fusion of ultrasound and X-ray imaging
Duration: 01.02.2015 to 31.01.2017
Structural heart disease is increasingly being treated intravascularly. Catheter-based interventions use both fluoroscopy and ultrasound images to navigate guidewires, catheters and instruments to their destination. Fluoroscopy provides excellent images of instruments and vessels. However, a lot of information is lost by projecting a 3D space onto a 2D image plane. Ultrasound provides real-time images in 3D, but the images are significantly noisier. The two imaging methods are therefore complementary and are often used together in catheter-based processes. Siemens is currently developing application software that can fuse ultrasound and X-ray images. The aim of the work package is to test the safety, accuracy and manageability of the application in as realistic an environment as possible.
This text was translated with DeepL
Electromagnetic Tracking
Duration: 01.02.2015 to 31.12.2016
The electromagnetic tracking system is widely used in clinical applications, e.g. image-guided interventions. However, the slow measurement speed, low tracker accuracy due to nearby metallic objects prevent electromagnetic tracking system from being more widely used in clinics. This project aims to improve the clinical electromagnetic tracking system with the following features: Fast tracking speed and robustness to ambient metals and electronic devices. The research result will provide the solutions in software. In clinical setup, no additional hardware are needed. Therefore, the established clinical workflows do not need to be changed.
Derivation of low-interference electrocardiograms in the magnetic resonance tomograph
Duration: 01.10.2013 to 31.12.2015
The electrocardiogram (ECG) is the electrical activity of the heart muscle measured on the surface of the skin. In clinical diagnostics, the ECG has a wide range of applications and is essential for monitoring a patient's vital condition. It is therefore important to measure the ECG of unstable patients during magnetic resonance imaging (MRI). However, the various magnetic fields interfere with an ECG signal recorded within the MRI, making it unusable for cardiological diagnostics.
The aim of the project is to provide a diagnostically usable ECG within the MRI. This can significantly improve patient safety and open up new clinical areas of application, such as MRI-guided, minimally invasive interventions. In addition, the synchronization of heartbeat and MRI imaging of the heart is to be optimized, as effective synchronization is currently only possible at low magnetic flux densities. The developments will be based on adapted signal processing methods and new hardware for recording additional chest wall leads.
This text was translated with DeepL
Image-guided methods in neuroradiology - Exclusion of bleeding in cerebral infarction
Duration: 01.07.2014 to 31.12.2015
A central issue in acute stroke diagnostics is the differentiation between ischemia and cerebral hemorrhage. The aim of the work package is to develop an executable algorithm for motion compensation in order to achieve better image quality for the exclusion of bleeding.
This text was translated with DeepL
Forschungscampus STIMULATE
Duration: 01.03.2014 to 31.12.2015
- 3D Imaging C-Arm: Establishing soft tissue resolution
- Devices: Smart instruments for intra-vascular stroke treatment
- Interventional MRI: MRI compatible instrumenting
- Brain-Machine-Interfaces: ECoG signal classification
- Education: Implementation of a bachelor program at the OVGU
Plaque-CharM - Plaque characterization using mm-waves on a catheter
Duration: 01.09.2012 to 30.08.2015
The underlying arteriosclerotic disease is the cause of a large number of ischemic damage patterns in the human organism. In this context, coronary heart disease is the most epidemiologically significant disease in industrialized countries. The aim of this project is to develop a new miniaturized radar sensor for the minimally invasive characterization of arterial vascular systems using millimetre waves. This sensor, which is integrated into the catheter tip, will be used to image the inner walls of blood vessels in order to classify the stages of arteriosclerosis. The plaque on the inner walls of arteries consists of fat and calcium deposits. The electrical properties in the THz range of these deposits make it possible to gain an insight into the composition of the plaque. The electrical properties of tissue areas with a low water content or high calcium content can be clearly distinguished from healthy tissue. The major innovation of the project is the development of a silicon chip using IHP BiCMOS technology at frequencies in the range of 30 - 300 GHz. Due to the very high operating frequency, the length of the necessary antennas is reduced to a few millimeters. Due to its small dimensions (1 - 2 mm2), this sensor chip can be integrated into the tip of a catheter. This procedure has the potential to introduce a new quality into the clinical assessment of the risk of arteriosclerosis and thus the preventive therapy of heart attacks and strokes. The aim of the InES measure is to promote research and development into the electronic design, manufacture and testing of intelligent electronic systems with the aim of opening up innovative applications in medical technology. The aim of this project, to develop a miniaturized radar sensor for the minimally invasive characterization of arterial vascular systems with millimeter waves, makes a valuable contribution to the InES funding measure.
This text was translated with DeepL
Detection and visualization of neurovascular implants
Duration: 01.05.2014 to 28.02.2015
Newer neurovascular implants are made of very thin nickel-titanium wires. To increase visibility in X-ray fluoroscopy, these implants contain characteristic marker structures made of radiopaque materials. The aim of the project is to detect these implants using the marker structures in a 3D reconstruction from a cone beam CT and to visualize them appropriately.
This text was translated with DeepL
ego.INKUBATOR: "Patient-specific medical devices" potential
Duration: 01.12.2012 to 30.12.2014
The aim of the ego.INKUBATOR "Patient-specific medical devices" is to give students and scientific staff an understanding of the entrepreneurial potential of induvidualized medical technology. By supporting the development of ideas, introducing entrepreneurial thinking and demonstrating the technological possibilities on both the medical and manufacturing side, the ego participants are to be given the tools for a successful start-up in the field of medical technology. The planned measures focus on qualification and support. The basic training will initially be divided into technical and business subjects. Students and academic staff from the engineering sciences without relevant prior knowledge will receive an introduction to the special features of medical technology and the product development methods used there.
With the help of the proposed elements of the INKUBATOR, the existing technical components of the participating faculties can be combined into a process chain. This gives the participants interested in founding a company the opportunity to incorporate the acquired knowledge directly into real products.
This text was translated with DeepL
Medical technology for interventional neuroradiology
Duration: 01.01.2011 to 30.12.2014
The focus is on research into X-ray-based applications in interventional neuroradiology. Innovations are to be developed in close cooperation between SIEMENS and the users, i.e. the medical and medical technology sectors. In particular, the main topics of measuring tissue perfusion using C-arm CT on angiography systems and the integration of microscopy into the angiography system will be addressed.
This text was translated with DeepL
STIMULATE research campus
Duration: 01.03.2013 to 28.02.2014
The Magdeburg Research Campus STIMULATE is a project funded by the BMBF as part of the "Research Campus - Public-Private Partnership for Innovation" funding initiative. The focus of STIMULATE is on technologies for image-guided minimally invasive methods in medicine. The aim is to improve medical treatment methods and curb the cost explosion in the healthcare system. The focus is on age-related common diseases in the fields of oncology, neurology and vascular diseases. In the long term, the STIMULATE project is to develop into the "German Center for Image-guided Medicine".
This text was translated with DeepL
STIMULATE -> Imaging ->3D Imaging C-Arm
Duration: 01.03.2013 to 28.02.2014
The objective of this focus area is to optimize and expand the functionality of the C-arm-based X-ray angiography system for use as an image-guiding system in minimally invasive operations. In the medium term, the aim is to bring the diagnostic capabilities of the C-arm closer to a fully-fledged CT in order to increase the diagnostic possibilities during surgery and improve the quality of operations and enable new types of interventions. This would simultaneously upgrade the operating room to a diagnostic room. The technological work is aimed at developing software to optimize image quality and provide new functionalities (e.g. perfusion imaging). The limitations of the C-arm hardware (slow rotation, sluggish detector, low image refresh rate) pose particular challenges, which are to be compensated for by intelligent software. In the preliminary phase, feasibility is analyzed, the requirements are defined and the tasks for the main phase are planned. In addition, test implementations are carried out on an experimental robot system.
This text was translated with DeepL
STIMULATE -> Instruments
Duration: 01.03.2013 to 28.02.2014
Minimally invasive interventions require special instruments that must offer a wide range of functions in the smallest possible size in order to provide added value for the surgeon. In addition to the requirements placed on the instruments in terms of their mechanical properties and various functionalities, there are also challenges in terms of their exact positioning and the intuitive control of the imaging apparatus used.
In order to improve the quality and efficiency of established therapeutic procedures and to enable new therapeutic approaches, the STIMULATE research campus aims to develop new types of instruments and expand existing functionalities. In the "Instruments" project, for example, market analyses are carried out in the preliminary phase, which form the basis for the instrument definition and method conception. Functionalities are tested and optimized with the help of simulations and demonstrators.
This text was translated with DeepL
STIMULATE -> Instruments -> Interventional MRI
Duration: 01.03.2013 to 28.02.2014
The main aspect of this focus area is the promotion of magnetic resonance imaging (MRI) as an imaging technique for minimally invasive surgery in the diagnosis and treatment of oncological diseases. The focus will be on MRI-guided interventional treatment of breast cancer. The aim is to develop and provide technologies and to work out a medical workflow for carrying out such procedures. The technological issues consist of developing suitable tools - i.e. MRI-compatible tools and tools that allow access to the target organ - for interventions using MRI. Existing medical instruments can be included in the optimization process and serve as a basis for intervention-related functionalization. In the preliminary phase, the need is determined, the feasibility is analyzed, the requirements are defined and the tasks for the main phase are planned.
This text was translated with DeepL
STIMULATE -> Management/trainees -> Trainees
Duration: 01.03.2013 to 28.02.2014
The aim of this work package is to develop and implement attractive education, further education and training measures in order to ensure that the STIMULATE research campus and its partners have the young talent they need. Through particularly high quality and exclusive features, the training should contribute to increasing the attractiveness of STIMULATE and the location in an international comparison and thus ultimately also contribute to the successful recruitment of external scientists and technicians.
This text was translated with DeepL
ASTER - Acute stroke care - Telematics platform for the ambulance
Duration: 01.01.2012 to 31.12.2013
Stroke is the third most common cause of death in Germany and is largely responsible for permanent disability and the need for long-term care. Demographic trends mean that the incidence of stroke is expected to increase. In 81% of strokes, immediate medical intervention would promise successful treatment. However, as there is only a time window of around three hours available for treatment, only 2% of all stroke patients are reached today. Speeding up emergency care could significantly increase this rate. This is where the ASTER project - acute stroke care - telematics platform for the ambulance comes in. An innovation forum of the same name was the starting point for the Growth Core Potential Initiative launched in 2012. The aim is to develop a mobile ambulance assistant that supports rescue personnel in reliably assessing the medical incident and deciding on the most appropriate course of action.
This text was translated with DeepL
ViERforES II - TP 3.4: Application scenarios for intraoperative visualization and imaging
Duration: 01.01.2011 to 31.08.2013
In the previous project phase, the general procedures for intraoperative visualization were developed using the example of neurosurgery. The results achieved were demonstrated with the help of a specially constructed prototype. This prototype initially proved its function within a training environment consisting of a PC with a video camera simulating the microscope, a phantom model of the human head and an optical, marker-based tracking procedure. With the help of this demonstrator, various exemplary risk structures and tumor extensions could be superimposed on the simulated microscope image and presented to the doctors. The doctors' assessments were very positive. Now that the basic methods have been developed, the second phase will see the prototypical implementation of these methods in real medical devices with partners from industry and their initial testing by surgeons. The results achieved are to be implemented and evaluated not only for the application in neurosurgery, which has been the focus so far, but more broadly for four different medical applications. The surgical laboratory of the Chair of Medical Telematics and Medical Technology (Prof. G. Rose) is equipped with a modern intraoperative imaging system, i.e. a robot-based C-arm 3D angiography system (Siemens Artis zeego). Another focus is the integration of this system into the workflow of the test environment for safe minimally invasive procedures. In the field of Ambient Assisted Living, elementary safety scenarios have so far been examined for their effects on conscious externally initiated threats (security). In this project phase, these investigations will be extended to more complex safety scenarios and their effects on accidental errors in the communication channels. For this purpose, the considered non-functional aspects will be extended to availability and reliability. Furthermore, comprehensive empirical evaluations of the methods and tools developed for the application areas will be carried out. The aim is to quantitatively determine their effectiveness (e.g.: number of identifiable safety problems) and efficiency (e.g.: effort per problem).
This text was translated with DeepL
INKA - Intelligente Katheter
Duration: 01.06.2008 to 31.05.2013
Minimalinvasive, kathetergestützte Eingriffe gewinnen zunehmend an Bedeutung bei den verschiedensten Krankheitsfeldern. Innerhalb von Inka werden Hightech-Werkzeuge für den Operateur entwickelt, welche sich gezielt zum Krankheitsherd innerhalb des Körpers navigieren lassen, aussagekräftige Diagnosen direkt am Ort der Pathologie erlauben, um dort schließlich auch als Therapiewerkzeuge eingesetzt werden zu könne. Dabei ist es natürlich von zentraler Bedeutung, dass der Einsatz dieser Katheter nur zu einer minimalen Gesundheitsbelastung (Trauma, Röntgenstrahlung) des Patienten aber auch Arztes führen. Ziel des Vorhabens ist die Entwicklung von Kathetern in den Bereichen Neurologie, Tumortherapie sowie Orthopädie. Zu den Leistungs-merkmalen dieser Instrumente zählen eine neuartige Ortung und Navigation im Körper ohne Strahlenbelastung sowie die Integration bildgebender, diagnostischer aber auch therapeutischer Verfahren an der Katheterspitze. Fernziel sind automatische schlangenartige Mikrokatheter, die sich anhand von computertomographischen Bildern selbstständig ihren Weg zum Krankheitsherd suchen, dort diagnostische Bilder aufnehmen und mittels Mikrowerkzeugen die notwendige Therapie durchführen. Der Bedarf an Innovationen in Bereich der Unterstützung von minimalinvasiven Operationen ist damit sehr groß. In der BMBF-Studie "Zur Situation der Medizintechnik in Deutschland im internationalen Vergleich" wird festgestellt: "Da katheterbasierte Interventionen zunehmen werden, ist es von großem Interesse, neue Lösungen zu entwickeln, die dem Arzt eine praktikable Hilfe bieten, für den Patienten schonend sind, sich leichter ans Ziel navigieren lassen und bessere oder andere Signale an der Katheterspitze messen." Das Inka-Projekt soll langfristig dazu beitragen, die Otto-von-Guericke-Universität Magdeburg als international renommierten Standort im Bereich der Entwicklung minimalinvasiver Operationstechniken zu etablieren. Dazu soll auch der kürzlich eingerichtete neue Masterstudiengang "Medizinische Systeme" beitragen. In das Projekt sind darüber hinaus lokale und regionale mittelständische Unternehmen mit der Zielsetzung eingebunden, die wissenschaftlichen Ergebnisse in anwendungsreife Produkte in dem stark expandierenden Wachstumsmarkt Medizintechnik umzusetzen.
INKA Intelligente Katheter
Duration: 01.06.2008 to 31.05.2013
Minimalinvasive, kathetergestützte Eingriffe gewinnen zunehmend an Bedeutung bei den verschiedensten Krankheitsfeldern. Innerhalb von Inka werden Hightech-Werkzeuge für den Operateur entwickelt, welche sich gezielt zum Krankheitsherd innerhalb des Körpers navigieren lassen, aussagekräftige Diagnosen direkt am Ort der Pathologie erlauben, um dort schließlich auch als Therapiewerkzeuge eingesetzt werden zu könne. Dabei ist es natürlich von zentraler Bedeutung, dass der Einsatz dieser Katheter nur zu einer minimalen Gesundheitsbelastung (Trauma, Röntgenstrahlung) des Patienten aber auch Arztes führen. Ziel des Vorhabens ist die Entwicklung von Kathetern in den Bereichen Neurologie, Tumortherapie sowie Orthopädie. Zu den Leistungs-merkmalen dieser Instrumente zählen eine neuartige Ortung und Navigation im Körper ohne Strahlenbelastung sowie die Integration bildgebender, diagnostischer aber auch therapeutischer Verfahren an der Katheterspitze. Fernziel sind automatische schlangenartige Mikrokatheter, die sich anhand von computertomographischen Bildern selbstständig ihren Weg zum Krankheitsherd suchen, dort diagnostische Bilder aufnehmen und mittels Mikrowerkzeugen die notwendige Therapie durchführen. Der Bedarf an Innovationen in Bereich der Unterstützung von minimalinvasiven Operationen ist damit sehr groß. In der BMBF-Studie "Zur Situation der Medizintechnik in Deutschland im internationalen Vergleich" wird festgestellt: "Da katheterbasierte Interventionen zunehmen werden, ist es von großem Interesse, neue Lösungen zu entwickeln, die dem Arzt eine praktikable Hilfe bieten, für den Patienten schonend sind, sich leichter ans Ziel navigieren lassen und bessere oder andere Signale an der Katheterspitze messen." Das Inka-Projekt soll langfristig dazu beitragen, die Otto-von-Guericke-Universität Magdeburg als international renommierten Standort im Bereich der Entwicklung minimalinvasiver Operationstechniken zu etablieren. Dazu soll auch der kürzlich eingerichtete neue Masterstudiengang "Medizinische Systeme" beitragen. In das Projekt sind darüber hinaus lokale und regionale mittelständische Unternehmen mit der Zielsetzung eingebunden, die wissenschaftlichen Ergebnisse in anwendungsreife Produkte in dem stark expandierenden Wachstumsmarkt Medizintechnik umzusetzen.
EsTaTes
Duration: 01.08.2011 to 30.09.2012
The aim of this project proposal is to confirm the finding that a significant improvement in stroke care can be achieved with the help of telemedicine using the infrastructure we have developed and no further requirements for the peripheral clinics by means of a clinical evaluation. To this end, a corresponding study is to be conducted, which will record and analyze the most important parameters of stroke care with the telemedicine setup and compare them with published results from clinics without stroke units and without telemedicine. The core questions of the study are the three points effectiveness, safety and acceptance of the approach.
This text was translated with DeepL
TASC - Telemedical Acute Stroke Care
Duration: 01.07.2009 to 30.06.2011
Das Forschungsziel (A) des ForMaT-Projekts Telemedical Acute Stroke Care (TASC) ist es, die Qualität der Akutversorgung von Schlaganfallpatienten in den ersten drei Stunden signifikant zu erhöhen. Konkret heißt das, die Kompetenz vorhandener Stroke-Units einem breiteren Versorgungsumfeld mittels Telemedizin zugänglich zu machen. Das Verwertungsziel (B) des ForMaT-Projekts ist es, Geschäftsmodelle für die telemedizinische Akutversorgung von Schlaganfallpatienten zu entwickeln und diese weitestgehend privatwirtschaftlich umzusetzen.
Optimierung der Telemedizin für akute Schlaganfallbehandlung
Duration: 01.04.2008 to 31.03.2011
Das Projekt gilt der Optimierung der telemedizinischen Infrastruktur, welche heutzutage im Wesentlichen aus einer Videokonferenzeinrichtung sowie Patientendatenübertragung besteht. Die Zielsetzung des Projekts besteht in der intelligenten Integration aller Komponenten zu einer integrierten Telemedizinplattform. Als Beispielerkrankung wird dabei der Schlaganfall betrachtet.
ViERforES - Teilprojekt: Überlagerung von chirurgischen Mikroskopiebildern mit intraoperativen CT-Bildern
Duration: 01.10.2008 to 31.03.2011
Bei chirurgischen Eingriffen im Gehirn müssen Verletzungen kritischer Regionen (Gefäße, wichtige neuronale Verbindungen) dringend vermieden werden. Aufgrund des der Hirnverschiebung (Brainshift) nach den Öffnen des Schädels ist das besonderes kompliziert. Die Chirurgen verwenden bei diesen Eingriffen optische Mikroskope, um die feinen Strukturen im Gehirn besser beurteilen zu können. Dieses erlaubt jedoch nur die Darstellung der aktuellen Oberflächen, nicht jedoch der ggf. gefährlichen Strukturen darunter. Hier soll dem Mikroskopbild ein diagnostisches oder gar ein interoperativ erstelltes CT- oder MRT-Bild im AR-Sinne überlagert und dem Operateur im Mikroskop als Überlagerung präsentiert. Tatsächlich liefern moderne C-arm-Röntgen-Systeme, welche immer häufiger auch in der Neuro-Chirurgie anzutreffen sind, hervorragende 3D-Angio-Bilder sowie recht gute CT-Bilder. Dem Arzt soll hierdurch immer wieder ein Update seiner Position als voxelbasiertes Modell eingeblendet werden, was ihm per Augmented Reality Verfahren eine bessere Orientierung ermöglicht.
MOBESTAN: Modellierung und Beeinflussung von Strömungen in Aneurysmen
Duration: 01.10.2008 to 30.09.2010
Aneurysmen sind krankhafte Ausbeulungen der arteriellen Gefäßwände. Das Platzen dieser Aneurysmen führt zu starken inneren Blutungen und kann - abhängig vom betroffenen Gefäß - innerhalb von Minuten zum Tode führen. Dieses gilt insbesondere für Aorta- und Gehirnarterien: ruptierte Aneurysmen führen zu einer lebensbedrohlichen Hämorrhagie. Die Behandlung dieser Ausbeulungen an Gefäßen im peripheren Gefäßsystem ist im Allgemeinen eine Aufgabe der Gefäßchirurgie. Die Behandlung von intrazerebralen Aneurysmen wird aufgrund des schwierigen operativen Zugangs meistens mittels den Kopf und dann in das Innere des Aneurysmas vorgeschoben und mit Edelmetalldraht ausgefüllt (Coiling), in der Hoffnung, dass der Hauptblutstrom an der Ausbeulung vorbeigeführt und das Aneurysma im Laufe der Zeit mit Gewebe zuwächst. Eine kürzlich entwickelte Therapiestrategie empfiehlt das Platzieren von Stents auf der Höhe des Aneurysmas, so dass die Hämodynamik in der Nähe der Ausbeulung so verändert wird, dass der Hauptblutstrom am Aneurysma vorbeiführt. Aufgrund des extrem hohen Eingriffsrisikos, ist jedoch bei derartigen Interventionen äußerste Zurückhaltung angezeigt. Nur wenn die Gefahr einer spontanen Ruptur sehr hoch ist, wird der Eingriff gewagt. Die Beurteilung des Risikos einer Ruptur eines Aneurysmas ist daher ein zentrales Problem der präoperativen Diagnostik. Dafür muss die Blutströmung um das Aneurysma zuverlässig vorhergesagt werden können. Besonders wichtig für eine zukünftige Verbesserung dear Behandlung wäre die Optimierung existierender Stent-Geometrien sowie die Entwicklung effizienter Stents. Das sind die Kernaufgaben des vorliegenden Forschungsprojektes.
Functional Imaging during X-ray Interventions (Marie-Curie Program)
Duration: 01.06.2005 to 30.03.2010
The technical objective of the project is to develop and exploit basic and application-specific methods for tomographic X-ray imaging, with the vision of improved medical treatment procedures in interventional medicine in Europe. In particular, the project aims at making currently unavailable quantitative information on physiological parameters, such as arterial blood flow and brain tissue perfusion, accessible during X-ray interventions. A second major technical objective is to enable interventional tomographic X-ray imaging of fast moving objects such as the human heart. Availability of such imaging capabilities is expected to significantly improve planning, guidance, and outcome control of existing and future minimal-invasive medical treatment procedures.
Bernstein-Gruppe Components of cognition: small networks to flexible rules: Collective behaviour of spiking neurons and plastic synapses
Duration: 15.12.2006 to 31.01.2010
We aim to develop tools for the subsequent stages of signal analysis of extracellular MEA recordings concerning (1) the detection of extracellular correlates of neuronal action potentials ( spikes ), and (2) the analysis of the spatio-temporal structure of neuronal firing in response to electrical or pharmacological stimuli. Classification of spontaneous activity modes observed in cell culture will be analyzed by spatiotemporal pattern recognition. Temporally, spikes are often arranged in bursts of activity, followed by periods of silence. This can either occur at the level of single electrodes, multiple electrodes, or across the entire network. Different algorithms of spike pattern recognition (signal integration, heuristic, string method, entropy-based, surprise) will be implemented and compared.
Messung der Perfusion auf der Basis computer-tomographischer Bildgebung
Duration: 01.12.2006 to 30.10.2009
Das Projekt dient der Entwicklung und Evaluation von Methoden zur zerebralen tomographischen Durchblutungsmessung (Perfusion) mit Hilfe von 3D-Angiographiegeräten. Dabei sollen modellbasierte Ansätze zur Anwendung gelangen, um die zu langsame Projektionsdatenaufnahme der Angio-Anlage kompensieren zu können.
TRANSAGE - Transformation von Versorgung für eine alternde Gesellschaft
Duration: 01.08.2008 to 31.03.2009
Mit dem Projekt TRANSAGE soll die Gesundheitsregion Sachsen-Anhalt demografiefest werden. Dazu müssen die Versorgungsstrukturen in demografisch schrumpfenden Regionen des Landes so transformiert werden, dass eine Versorgung entsprechend den Bedürfnissen der Patienten zu wettbewerbsfähigen Kosten gesichert wird. Dabei steht die Vermeidung und geeignete flächendeckende Versorgung von Volkskrankheiten des Alters im Mittelpunkt. Eine alternde Bevölkerung mit steigender Leistungsnachfrage erfordert eine Vernetzung der sektoralen Kompetenzen durch eine innovative Transformation der Versorgungsstrukturen.
Zentraler Ansatz ist die Transformation vorhandener struktureller Kapazitäten. Dazu wird als innovativer Meilenstein in Sachsen-Anhalt modellhaft ein telemedizinisches Servicezentrum geschaffen. Dieses wird durch seine umfassenden Dienstleistungen erstmals über Sektorgrenzen hinweg die Versorgung von Patienten, die unter Volkskrankheiten leiden, insbesondere in der Fläche zu wettbewerbsfähigen Kosten optimieren. Das Zentrum wird erstens durch die Bereitstellung von Expertenwissen für den peripheren stationären und ambulanten Bereich via Telemedizin Möglichkeiten der Diagnose und Behandlung verbessern. Ein zentraler Datenserver wird zweitens den sektorenübergreifenden Informationsaustausch ermöglichen.
Drittens soll über die Anbindung der hausärztlichen versorgungsebene durch Home Monitoring den Patienten ein Leben zu Hause unter Entlastung der Versorgungsstrukturen ermöglichen. Telelearning bietet abschließend sektorintern und sektorübergreifend Weiterbildungsmöglichkeiten. Die Gesundheitsregion konzentriert sich aufgrund der aufgezeigten demografischen Entwicklung zunächst modellhaft auf die drei häufigsten Alterserkrankungen: Schlaganfall, koronare Herzerkrankung (Infarkt bis Insuffizienz) und kolorektales Karzinom.
Methoden zur Bestimmung des Blutflusses in Aneurysmen mit Hilfe bildgestützer Verfahren
Duration: 01.12.2005 to 30.09.2008
Die Messung des Blutflusses in zerebralen Aneurysmen ist besonders wichtig für eine Therapieentscheidung sowie für die Therapiebeurteilung. Aufgrund der Schädeldecke können jedoch nur wenige Verfahren zum Einsatz kommen. Besonders interessant ist es, mit Angiographieanlagen, wie sie zur Beurteilung der Gefäße sowie für die Durchführung von Intervetionen heutzutage eingesetzt werden, die Flusseigenschaften von Aneurysmen messen zu können. In diesem Projekt soll mit Hilfe von zwei orthogonalen Projektionen der räumlich-zeitlichen Verteilung von lokal gespritzem Kontrastmittel der Blutfluss durch ein Aneurysma approximativ bestimmt werden. Durch den Vergleich mit Phantomen und exakten Messungen mit Hilfe von Laser-Doppler-Verfahren werden die entwickelten Modelle adaptiert und evaluiert.
ASTER - Akut-Schlaganfall-Versorgung-Telemedizin im Rettungswagen
Duration: 01.09.2007 to 29.02.2008
ASTER Akut-Schlaganfall-Versorgung-Telemedizin im Rettungswagen ist ein Projekt, welches das Ziel verfolgt, Lösungen und Szenarien für die Optimierung der Schlaganfallversorgung innerhalb der Rettungskette zu erarbeiten und diskutieren.
Das Projekt Partner wird durchgeführt vom Innomed e.V. in Zusammenarbeit mit dem Lehrstuhl für Medizinische Telematik der Otto-von-Guericke-Universität Magdeburg und vom BMBF gefördert.
2025
Peer-reviewed journal article
MRI-compatible and sensorless haptic feedback for cable-driven medical robotics to perform teleoperated needle-based interventions
Vogt, Ivan; Eisenmann, Marcel; Schlünz, Anton; Kowal, Robert; Düx, Daniel Markus; Thormann, Maximilian; Glandorf, Julian Magnus Wilhelm; Yerdelen, Seben Sena; Georgiades, Marilena; Odenbach, Robert; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Fischbach, Frank; Rose, Georg
In: International journal of computer assisted radiology and surgery - Berlin : Springer, Bd. 20 (2025), Heft 1, S. 179-189
Model‐based perfusion reconstruction with time separation technique in cone‐beam CT dynamic liver perfusion imaging
Haseljić, Hana; Frysch, Robert; Kulvait, Vojtěch; Werncke, Thomas; Brüsch, Inga; Speck, Oliver; Schulz, Jessica; Manhart, Michael; Rose, Georg
In: Medical physics - Hoboken, NJ : Wiley, Bd. 52 (2025), Heft 4, S. 2074-2088
Modulating CT attenuation of polyvinyl alcohol cryogels for individualized training phantoms in interventional radiology - a proof-of-concept study
Volk, Martin; Vogt, Ivan; Georgiades, Marilena; Menhorn, Johanna; Becker, Mathias; Rose, Georg; Pech, Maciej; Großer, Oliver Stephan
In: Gels - Basel : MDPI, Bd. 11 (2025), Heft 8, Artikel 664, insges. 14 S.
Microwave-assisted optimization of polyvinyl alcohol cryogel (PVA-C) manufacturing for MRI phantom production
Vogt, Ivan; Volk, Martin; Kulzer, Emma-Luise; Seibt, Janis; Pech, Maciej; Rose, Georg; Großer, Oliver Stephan
In: Bioengineering - Basel : MDPI, Bd. 12 (2025), Heft 2, Artikel 171, insges. 8 S.
2024
Abstract
Investigating the feasibility of MR-based conductivity measurement during electroporation of multi-conductivity agarose phantom on a clinical 1.5 T MRI
Belker, Othmar; Gerlach, Thomas; Hubmann, Max Joris; Müller, Noah; Eisenmannm, Marcel; Rose, Gerd; Speck, Oliver; Wacker, Frank; Hensen, Bennet; Gutberlet, Marcel
In: 14th International Interventional MRI Symposium - Leipzig . - 2024, S. 86 [Symposium: 14th Interventional MRI Symposium, Annapolis, Maryland, October 17-18, 2024]
Demonstration of a versatile, fully metal-free mechanical holding arm for interventional MRI procedures
Odenbach, Robert; Düx, Daniel; Gerlach, Thomas; Hensen, Bennet; Gutberlet, Marcel; Vogt, Marcel; Wacker, Frank; Rose, Gerd
In: 14th International Interventional MRI Symposium - Leipzig . - 2024, S. 89 [Symposium: 14th Interventional MRI Symposium, Annapolis, Maryland, October 17-18, 2024]
First experience with MR thermometry and assessment of the ablation zone in microwave ablation of a bioprotein phantom on a 0.55T scanner
Belker, Othmar; Gerlach, Thomas; Krafft, Axel Joachim; Maier, Florian; Requardt, Martin; Horstmann, Dominik; Rose, Gerd; Speck, Oliver; Wacker, Frank; Hensen, Bennet; Gutberlet, Marcel
In: 14th International Interventional MRI Symposium - Leipzig . - 2024, S. 17 [Symposium: 14th Interventional MRI Symposium, Annapolis, Maryland, October 17-18, 2024]
Optimization of manufacturing process for polyvinyl alcohol cryogels (PVA-C) intended for anthropomorphic training phantoms in CT-interventions
Volk, Martin; Vogt, Ivan; Kulzer, Emma-Luise; Georgiades, Marilena; Rose, Georg; Pech, Maciej; Großer, Oliver Stephan
In: 2024, Artikel C-11043, [Online-Ressource] [Konferenz: European Congress of Radiology, ECR 2024, Vienna, Austria, 28 February - 3 March 2024]
Simultaneous and respiratory motion-synchronized T2 and T2* mapping of the human kidneys
Velasquez Vides, Jose Raul; Herrmann, Carl J. J.; Gladytz, Thomas; Shalikar, Shahriar; Millward, Jason M.; Waiczies, Sonia; Seeliger, Erdmann; Mattern, Hendrik; Rose, Georg; Niendorf, Thoralf
In: ISMRM & ISMRT Annual Meeting & Exhibition - Concord, CA : International Society for Magnetic Resonance in Medicine . - 2024, Artikel 2754 [Konferenz: ISMRM & ISMRT Annual Meeting & Exhibition, Singapore, 04-09 May 2024]
Demonstration of a universal cable-Management-system for MRI-guided interventions in anesthesia
Odenbach, Robert; Düx, Daniel; Gerlach, Thomas; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Rose, Gerd
In: 14th International Interventional MRI Symposium - Leipzig . - 2024, S. 28 [Symposium: 14th Interventional MRI Symposium, Annapolis, Maryland, October 17-18, 2024]
Demonstration of a large scale, fully metal-free tray-platform for instrument support during interventional MRI procedures
Odenbach, Robert; Düx, Daniel; Gerlach, Thomas; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Rose, Gerd
In: 14th International Interventional MRI Symposium - Leipzig . - 2024, S. 90 [Symposium: 14th Interventional MRI Symposium, Annapolis, Maryland, October 17-18, 2024]
Book chapter
Investigation of correction and decomposition algorithms in bedside x-ray imaging simulating a multi-layer flat panel detector
Schaefer, Jamin; Liu, Stephen Z.; Kappler, Steffen; Lueck, Ferdinand; Ritschl, Ludwig; Weber, Thomas; Zbijewski, Wojciech; Rose, Georg
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12925 (2024), S. 127 [Konferenz: SPIE Medical Imaging, San Diego, California, United States, 18 - 23 February 2024]
Peer-reviewed journal article
Joint B0 and image reconstruction in low-field MRI by physics-informed deep-learning
Schote, David; Winter, Lukas; Kolbitsch, Christoph; Rose, Georg; Speck, Oliver; Kofler, Andreas
In: IEEE transactions on biomedical engineering / Institute of Electrical and Electronics Engineers - New York, NY : IEEE, Bd. 71 (2024), Heft 10, S. 2842-2853
Generating Contrast-Enhanced Liver MRI Images from Native Sequences
Hürtgen, Janine; Hille, Georg; Saalfeld, Sylvia; Kreher, Robert; Hensen, Bennet; Wacker, Frank; Rose, Georg; Ringe, Kristina I.
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 10 (2024), Heft 1, S. 33-36
CT-augmented digital tomosynthesis image reconstruction in image-guided bronchoscopy interventions
Saad, Fatima; Frysch, Robert; Saalfeld, Sylvia; Kellnberger, Stephan; Schulz, Jessica; Fahrig, Rebecca; Bhadra, Krish; Nürnberger, Andreas; Rose, Georg
In: Medical physics - Hoboken, NJ : Wiley, Bd. 52 (2025), Heft 3, S. 1468-1480
Effect of spectral filtering and segmental X-ray tube current switch-off on interventionalist’s scatter exposure during CT fluoroscopy
Großer, Oliver Stephan; Volk, Martin; Georgiades, Marilena; Punzet, Daniel; Alsawalhi, Bahaa; Kupitz, Dennis; Omari, Jazan; Wissel, Heiko; Kreißl, Michael; Rose, Georg; Pech, Maciej
In: Bioengineering - Basel : MDPI, Bd. 11 (2024), Heft 8, Artikel 838, insges. 10 S.
DDoS-UNet - incorporating temporal information using dynamic dual-channel UNet for enhancing super-resolution of dynamic MRI
Chatterjee, Soumick; Sarasaen, Chompunuch; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: IEEE access / Institute of Electrical and Electronics Engineers - New York, NY : IEEE, Bd. 12 (2024), S. 99122-99136
Vacuum-based and body-mounted robotic-patient interface with an integrated metasurface for MRI-guided interventions
Vogt, Ivan; Engel, Nico; Eisenmann, Marcel; Odenbach, Robert; Kowal, Robert; Düx, Daniel; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Rose, Georg
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 10 (2024), Heft 1, S. 93-96
MRI-compatible abdomen phantom to mimic respiratory-triggered organ movement while performing needle-based interventions
Vogt, Ivan; Engel, Katja; Schlünz, Anton; Kowal, Robert; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Rose, Georg
In: International journal of computer assisted radiology and surgery - Berlin : Springer, Bd. 19 (2024), Heft 12, S. 2329-2338
Exploration of interpretability techniques for deep COVID-19 classification using chest X-ray images
Chatterjee, Soumick; Saad, Fatima; Sarasaen, Chompunuch; Ghosh, Suhita; Krug, Valerie; Khatun, Rupali; Mishra, Rahul; Desai, Nirja; Radeva, Petia; Rose, Georg; Stober, Sebastian; Speck, Oliver; Nürnberger, Andreas
In: Journal of imaging - Basel : MDPI, Bd. 10 (2024), Heft 2, Artikel 45, insges. 22 S.
Deformable 3D/3D CT-to-digital-tomosynthesis image registration in image-guided bronchoscopy interventions
Saad, Fatima; Frysch, Robert; Saalfeld, Sylvia; Kellnberger, Stephan; Schulz, Jessica; Fahrig, Rebecca; Bhadra, Krish; Nürnberger, Andreas; Rose, Georg
In: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, Bd. 171 (2024), Artikel 108199, insges. 13 S.
Dissertation
Towards Digital Tomosynthesis-Guided Bronchoscopy Interventions
Saad, Fatima; Rose, Georg; Nürnberger, Andreas
In: Magdeburg: Universitätsbibliothek, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2024, 1 Online-Ressource (xxiv, 160 Seiten, 120,81 MB) [Literaturverzeichnis: Seite 145-160][Literaturverzeichnis: Seite 145-160]
Dynamic radio location in medical environment
Briese, Danilo; Rose, Georg
In: Magdeburg: Universitätsbibliothek, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2024, 1 Online-Ressource (XVII, 146 Seiten, 20,93 MB) [Literaturverzeichnis: Seite 125-134][Literaturverzeichnis: Seite 125-134]
Article in conference proceedings
Concept development of a cross-reality ecosystem for urban knowledge transfer spaces
Joeres, Fabian; Zittlau, Philipp; Herbrich, Wilhelm; Heinrich, Florian; Rose, Georg; Hansen, Christian
In: 2nd Joint Workshop on Cross Reality to be held in conjunction with the IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2024) - crossrealities, insges. 4 S. [Workshop: 2nd Joint Workshop on Cross Reality]
2023
Abstract
MR-thermometry on moving organs by a reproducible respiration simulation
Belker, Othmar; Gutberlet, Marcel; Gerlach, Thomas; Schluenz, Anton; Rose, Georg; Wacker, Frank; Hensen, Bennet; Vogt, Ivan
In: Konferenz: 6th Conference on Image-Guided Interventions, Mannheim, October 19 - 20, 2023, 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 63-64
Standardized manufacturing of polyvinylalcohol cryogel through microwave - proof-of-concept-study
Kulzer, Emma-Luise; Volk, Martin; Vogt, Ivan; Liegmal, Dominic; Engel, Katja; Rose, Georg; Großer, Oliver Stephan
In: Konferenz: 6th Conference on Image-Guided Interventions, IGIC 2023, Mannheim, 19-20 October 2023, 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 28-29
MetaGate wireless resonator for MR-guided percutaneous interventions
Kowal, Robert; Knull, Lucas; Hubmann, Max Joris; Düx, Daniel; Hensen, Bennet; Wacker, Frank; Rose, Georg; Maune, Holger
In: 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 58-59 [Konferenz: 6th Conference on Image-Guided Interventions, Mannheim, October 19 - 20, 2023]
Feasibility of current density imaging during IRE-treatment at 3T
Belker, Othmar; Gerlach, Thomas; Hubmann, Max Joris; Rose, Georg; Wacker, Frank; Hensen, Bennet; Gutberlet, Marcel
In: Konferenz: 6th Conference on Image-Guided Interventions, Mannheim, October 19 - 20, 2023, 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 76-77
Tracking algorithm for the robotic system μRIGS in interventional MRI
Thieße, Gina; Vogt, Ivan; Gerlach, Thomas; Wacker, Frank; Speck, Oliver; Rose, Georg; Gutberlet, Marcel; Hensen, Bennet
In: Konferenz: 6th Conference on Image-Guided Interventions, IGIC 2023, Mannheim, 19-20 October 2023, 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 12
Polyvinyl alcohol cryogel (PVA-C) as a base material for anthropomorphic phantoms in CT applications
Volk, Martin; Vogt, Ivan; Engel, Katja; Georgiades, Marilena; Omari, Jazan; Rose, Georg; Pech, Maciej; Großer, Oliver Stephan
In: 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 80-81, Artikel 123 [Konferenz: 6th Conference on Image-Guided Interventions, IGIC 2023, Mannheim, 19-20 October 2023]
Polyvinylalkohol-Cryogele (PVA-C) als Basis zur Erstellung anthropomorpher Trainingsphantome für CT-geführte Eingriffe
Volk, Martin; Fomin, Ivan; Engel, Katja; Georgiades, Marilena; Omari, Jazan; Rose, Georg; Pech, Maciej; Großer, Oliver Stephan
In: 54. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik, DGMP 2023 / Deutsche Gesellschaft für Medizinische Physik , 2023 - [Berlin] : [Deutsche Gesellschaft für Medizinische Physik e.V.], S. 146-147, Artikel PS02.06 [Konferenz: 54. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik, DGMP 2023, Magdeburg, 27.-30.09. 2023]
Prognostic and predictive role of immune profiling of image guided liver cancer interventions
Gylstorff, Severin; Rahm, Clements; Siba, Christian; Barajas Ordonez, Felix; Bär, Caroline; Rose, Georg; Omari, Jazan; Relja, Borna; Pech, Maciej
In: 6th Conference on Image-Guided Interventions - Mannheim . - 2023, S. 82-83, Artikel 124 [Konferenz: 6th Conference on Image-Guided Interventions, IGIC 2023, Mannheim, 19-20 October 2023]
Shear wave excitation in tissue phantom through non-spherical bubble collapse
Izak Ghasemian, Saber; Reuter, Fabian; Fan, Yuzhe; Rose, Georg; Ohl, Claus-Dieter
In: Bulletin of the American Physical Society - New York, NY : Soc. . - 2023, Artikel J46.00004
Book chapter
Liver segmentation in time-resolved C-arm CT volumes reconstructed from dynamic perfusion scans using time separation technique
Chatterjee, Soumick; Haseljić, Hana; Frysch, Robert; Kulvait, Vojtěch; Semshchikov, Vladimir; Hensen, Bennet; Wacker, Frank; Brüsch, Inga; Werncke, Thomas; Speck, Oliver; Nürnberger, Andreas; Rose, Georg
In: 2022 IEEE 5th International Image Processing, Applications and Systems Conference / IEEE International Conference on Image Processing Applications and Systems , 2022 - [Piscataway, NJ] : IEEE . - 2023, insges. 7 S.
Peer-reviewed journal article
Accurate determination of hip implant wear, cup anteversion and inclination through AI automated 2D-3D registration
Klebingat, Stefan; Bien, Tanja; Hürtgen, Janine; Grover, Priyanka; Dreischarf, Marcel; Alkhateeb, Shareef; Jäger, Marcus; Rose, Georg
In: Journal of orthopaedic research - Hoboken, NJ [u.a.] : Wiley, Bd. 41 (2023), Heft 9, S. 1985-1995
Liver segmentation using turbolift learning for CT and cone-beam C-arm perfusion imaging
Haseljić, Hana; Chatterjee, Soumick; Frysch, Robert; Kulvait, Vjtěch; Semshchikov, Vladimir; Hensen, Bennet; Wacker, Frank; Brüsch, Inga; Werncke, Thomas; Speck, Oliver; Nürnberger, Andreas; Rose, Georg
In: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, Bd. 154 (2023), Artikel 106539
Towards a biomechanical breast model to simulate and investigate breast compression and its effects in mammography and tomosynthesis
Hertel, Madeleine; Makvandi, Resam; Kappler, Steffen; Nanke, Ralf; Bildhauer, Petra; Saalfeld, Sylvia; Radicke, Marcus; Juhre, Daniel; Rose, Georg
In: Physics in medicine and biology - Bristol : IOP Publ., Bd. 68 (2023), Heft 8, Artikel 085007
Sinogram upsampling using Primal-Dual UNet for undersampled CT and radial MRI reconstruction
Ernst, Philipp; Chatterjee, Soumick; Rose, Georg; Speck, Oliver; Nürnberger, Andreas
In: Neural networks - Amsterdam : Elsevier, Bd. 166 (2023), S. 704-721
Dissertation
Towards faster and more precise MR spectroscopy at 7 T
Riemann, Layla Tabea; Rose, Georg; Speck, Oliver
In: Magdeburg: Universitätsbibliothek, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektro- und Informationstechnik 2023, 1 Online-Ressource (XII, 76, XIII-XXIII Seiten, 40,26 MB) [Literaturverzeichnis: Seite XIII-XXIII][Literaturverzeichnis: Seite XIII-XXIII]
Prior knowledge for deep learning based interventional cone beam Computed Tomography reconstruction
Ernst, Philipp; Nürnberger, Andreas; Rose, Georg
In: Magdeburg: Universitätsbibliothek, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik 2023, 1 Online-Ressource (xiii, 151 Seiten, 13,57 MB) [Literaturverzeichnis: Seite 111-124][Literaturverzeichnis: Seite 111-124]
Monitoring of microwave liver ablation by surface body-matched antennas
Khan, Muhammad Saad; Rose, Georg; Maune, Holger
In: Magdeburg: Universitätsbibliothek, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2023, 1 Online-Ressource (xi, 121, 2 Seiten, 9,01 MB) [Literaturverzeichnis : Seite 109-119][Literaturverzeichnis : Seite 109-119]
2022
Abstract
Optimierung der Organperfusion in einem präklinischen ex-vivo Lungenperfusionsmodell
Knoblich, Isabell; Linge, Helena; Wiese-Rischke, Cornelia; Padmanabhan, Shweatha; Kulvait, Vojtech; Rose, Georg; Walles, Thorsten
In: Pneumologie - Stuttgart [u.a.] : Thieme, Bd. 76 (2022), Heft 2, S. 119-120
Sensorless and cost-efficient force feedback signal acquisition for bowden cable-driven manipulators and robotics during image-guided procedures
Eisenmann, Marcel; Fomin, Ivan; Odenbach, Robert; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: 13th Interventional MRI Symposium - Leipzig, 2022 . - 2022, S. 109
Demonstration of versatile anatomically designed instrument alignment units for the remote operated RIGS instrument micropositioning system
Odenbach, Robert; Fomin, Ivan; Thoma, Niklas; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: Symposium: 13th Interventional MRI Symposium 2022, Leipzig, October 14-15, 2022, 13th International Interventional MRI Symposium - Leipzig . - 2022, S. 39
Multifunctional, elastic and non-metallic Bowden-cable coupling mechanism for the modularization and remote control of the RIGS instrument micropositioning system
Thoma, Niklas; Odenbach, Robert; Fomin, Ivan; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: Symposium: 13th Interventional MRI Symposium 2022, Leipzig, October 14-15, 2022, 13th International Interventional MRI Symposium - Leipzig . - 2022, S. 110
Application of litz wires in MRI coil design up to 15 MHz
Kowal, Robert; Fomin, Ivan; Prier, Marcus; Pannicke, Enrico; Rose, Georg; Speck, Oliver
In: London bound 2022 - International Society for Magnetic Resonance in Medicine, 2022 . - 2022
Development of a low-cost B0 field mapping device
Eisenmann, Marcel; Fomin, Ivan; Prier, Marcus; Rose, Georg; Speck, Oliver
In: London bound 2022 - International Society for Magnetic Resonance in Medicine, 2022 . - 2022
Intensity-based tracking technique to register devices in MRI-guided procedures
Fomin, Ivan; Kowal, Robert; Gutberlet, Marcel; Hensen, Bennet; Wacker, Frank; Speck, Oliver; Rose, Georg
In: 13th Interventional MRI Symposium - Leipzig, 2022 . - 2022, S. 51
Metamaterial inspired surface resonators as wireless coil
Kowal, Robert; Knull, Lucas; Pannicke, Enrico; Hubmann, Max Joris; Fomin, Ivan; Gareis, Daniel; Scherbel, Selina; Hensen, Bennet; Rose, Georg; Wacker, Frank; Speck, Oliver
In: 13th International Interventional MRI Symposium - Leipzig . - 2022, S. 106 [Symposium: 13th Interventional MRI Symposium 2022, Leipzig, October 14-15, 2022]
Modularizable, MRI-compatible and elastic abdominal phantom to perform dynamic interventional experiments under simulated respiratory cycles
Engel, Katja; Fomin, Ivan; Gerlach, Thomas; Hensen, Bennet; Gutberlet, Marcel; Wacker, Frank; Rose, Georg
In: 13th Interventional MRI Symposium - Leipzig, 2022 . - 2022, S. 117
Multi-channel receive coil for MRI-guided interventions
Kowal, Robert; Pannicke, Enrico; Gareis, Daniel; Scherbel, Selina; Knull, Lucas; Fomin, Ivan; Hubmann, Max Joris; Hensen, Bennet; Rose, Georg; Wacker, Frank; Speck, Oliver
In: 13th International Interventional MRI Symposium - Leipzig . - 2022, S. 107 [Symposium: 13th Interventional MRI Symposium 2022, Leipzig, October 14-15, 2022]
Book chapter
Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Kulvait, Vojtech; Hoelter, Philip; Punzet, Daniel; Doerfler, Arnd; Rose, Georg
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12031 (2022) [Konferenz: SPIE Medical Imaging, 2022, San Diego, California]
Towards patient specific reconstruction using perception-aware CNN and planning CT as prior
Ghosh, Suhita; Ernst, Philipp; Rose, Georg; Nürnberger, Andreas; Stober, Sebastian
In: IEEE ISBI 2022 proceedings , 2022 - Piscataway, NJ, USA1 : IEEE ; isbi [Konferenz: 19th International Symposium on Biomedical Imaging, ISBI, Kolkata, India, 28-31 March 2022]
Time separation technique using prior knowledge for dynamic liver perfusion imaging
Haseljić, Hana; Kulvait, Vojtěch; Frysch, Robert; Saad, Fatima; Hensen, Bennet; Wacker, Frank; Brüsch, Inga; Werncke, Thomas; Rose, Georg
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12304 (2022)
The effect of x-ray tube voltage modulation to quality of perfusion images in cone beam C-arm CT
Haseljić, Hana; Frysch, Robert; Kulvait, Vojtěch; Pfeiffer, Tim; Hensen, Bennet; Wacker, Frank; Brüsch, Inga; Werncke, Thomas; Rose, Georg; Punzet, Daniel
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12031 (2022)
Iterative intraoperative digital tomosynthesis image reconstruction using a prior as initial image
Saad, Fatima; Frysch, Robert; Pfeiffer, Tim; Saalfeld, Sylvia; Schulz, Jessica; Georgi, Jens-Christoph; Nürnberger, Andreas; Lauritsch, Günter; Rose, Georg
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12304 (2022), Artikel 123042Y [Konferenz: Seventh International Conference on Image Formation in X-Ray Computed Tomography, ICIFXCT 2022, Baltimore, United States, 2022]
Prior-aided volume of interest CBCT image reconstruction for clinical interventional data
Punzet, Daniel; Frysch, Robert; Behme, Daniel; Pfeiffer, Tim; Speck, Oliver; Rose, Georg
In: Proceedings of SPIE - Bellingham, Wash. : SPIE, Bd. 12031 (2022), Artikel 1203127
Development of a sterile interaction device during Image guided minimal-invasive interventions
Gruell, Christina; Pannicke, Enrico; Rose, Georg; Richter, Klaus; Krüger, Klaus
In: Konferenz: 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC, Glasgow, Scotland, United Kingdom, 11-15 July 2022, 44rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - [Piscataway, NJ]: IEEE . - 2022, S. 2506-2509
Peer-reviewed journal article
A novel use of time separation technique to improve flat detector CT perfusion imaging in stroke patients
Kulvait, Vojtěch; Hoelter, Philip; Frysch, Robert; Haseljić, Hana; Doerfler, Arnd; Rose, Georg
In: Medical physics - Hoboken, NJ : Wiley, Bd. 49 (2022), Heft 6, S. 3624-3637
Fourier-based decomposition for simultaneous 2-voxel MRS acquisition with 2SPECIAL
Riemann, Layla Tabea; Aigner, Christoph Stefan; Mekle, Ralf; Speck, Oliver; Rose, Georg; Ittermann, Bernd; Schmitter, Sebastian; Fillmer, Ariane
In: Magnetic resonance in medicine - New York, NY [u.a.]: Wiley-Liss, Bd. 88 (2022), 5, S. 1978-1993
ReconResNet: Regularised residual learning for MR image reconstruction of undersampled cartesian and radial data
Chatterjee, Soumick; Breitkopf, Mario; Sarasaen, Chompunuch; Yassin, Hadya; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: Computers in biology and medicine - Amsterdam [u.a.] : Elsevier Science, Bd. 143 (2022), Artikel 105321
Dissertation
Gait event recognition for triggering functional electrical stimulation during robotic gait training
Schicketmüller, Andreas; Rose, Georg
In: Magdeburg: Universitätsbibliothek, 2022, 1 Online-Ressource (ix, 159 Seiten, 7,4 MB), Illustrationen
Evaluation der Perfusionsbildgebung zur Schlaganfalldiagnostik am C-Arm-CT
Gugel, Sebastian; Rose, Georg; Berg, Philipp; Pech, Maciej
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2022, XIV, 114 Seiten [Literaturverzeichnis: Seite 101-109]
Article in conference proceedings
Primal-Dual UNet for sparse view cone beam computed tomography volume reconstruction
Ernst, Philipp; Chatterjee, Soumick; Rose, Georg; Nürnberger, Andreas
In: ResearchGATE - Cambridge, Mass. : ResearchGATE Corp. . - 2022, insges. 4 S. [Konferenz: Medical Imaging with Deep Learning (MIDL), Zürich, 2022]
Dual Branch Prior-SegNet - CNN for interventional CBCT using planning scan and auxiliary segmentation loss
Ernst, Philipp; Ghosh, Suhita; Rose, Georg; Nürnberger, Andreas
In: Medical Imaging with Deep Learning - OpenReview.net . - 2022, Artikel Paper 92, insges. 3 S. [Konferenz: Medical Imaging with Deep Learning, MIDL 2022, Zürich, Switzerland, July 06, 2022]
DDoS-UNet - incorporating temporal information using dynamic dual-channel UNet for enhancing super-resolution of dynamic MRI
Chatterjee, Soumick; Serasaen, Chompunuch; Rose, Georg; Speck, Oliver; Nürnberger, Andreas
In: ResearchGATE - Cambridge, Mass. : ResearchGATE Corp. . - 2022, insges. 4 S. [Konferenz: Medical Imaging with Deep Learning (MIDL), Zürich, 2022]
Motion-robust dynamic abdominal MRI using k-t GRASP and dynamic dual-channel training of super-resolution U-Net (DDoS-UNet)
Sarasaen, Chompunuch; Chatterjee, Soumick; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: ResearchGATE - Cambridge, Mass. : ResearchGATE Corp. . - 2022, insges. 4 S. [Konferenz: ISMRM-ESMRMB 2022]
Non-peer-reviewed journal article
Liver segmentation using turbolift learning for CT and cone-beam C-arm perfusion imaging
Haseljić, Hana; Chatterjee, Soumick; Frysch, Robert; Kulvait, Vojtěch; Semshchikov, Vladimir; Hensen, Bennet; Wacker, Frank; Brüsch, Inga; Werncke, Thomas; Speck, Oliver; Nürnberger, Andreas; Rose, Georg
In: Arxiv - Ithaca, NY : Cornell University . - 2022, Artikel 2207.10167, insges. 16 S.
DDoS-UNet - incorporating temporal information using dynamic dual-channel UNet for enhancing super-resolution of dynamic MRI
Chatterjee, Soumick; Sarasaen, Chompunuch; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: De.arxiv.org - [S.l.] : Arxiv.org . - 2022, Artikel 2202.05355, insges. 12 S.
2021
Abstract
[my]RIGS - Microposition robotics in clinical workflow for MRI guided prostate interventions
Fomin, Ivan; Odenbach, Robert; Fischbach, Frank; Pannicke, Enrico; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: Magnetic resonance materials in physics, biology and medicine - Heidelberg: Springer, 1993, Volume 34(2021), Suppl. 1, Seite S82-S83
Developing fast tools to perform deconvolution-based C-arm perfusion processing using Time separation technique and algebraic CT reconstruction in a diagnostically acceptable time
Kulvait, Vojtech; Frysch, Robert; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 47-48
Combining receive coils with microposition robotics for MRI guided interventions
Fomin, Ivan; Kowal, Robert; Pannicke, Enrico; Hensen, Bennet; Wacker, Frank; Speck, Oliver; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 27-28
Disposable receive coils for MR-guided interventions
Kowal, Robert; Sánchez López, Juan Sebastián; Pannicke, Enrico; Ehses, Maik; Moritz, Julia; Scherbel, Selina; Hensen, Bennet; Becker, Mathias; Fischbach, Frank; Pech, Maciej; Wacker, Frank; Rose, Georg; Speck, Oliver
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 25-26
Heating measurement of different ECG cable lengths and system states
Kwapik, Remigiusz; Moritz, Julia; Hensen, Bennet; Janny, Benedikt; Pannicke, Enrico; Schott, Danny; Rose, Georg; Speck, Oliver; Wacker, Frank
In: Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021, 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 51-52
Towards truncation handling in Grangeat-based registration of flat-panel projections
Frysch, Robert; Rose, Georg
In: Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021, 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 45-46
Comparison of SNR between a low-field (0.26T) Tabletop-MRI and a clinical high-field (3T) scanner
Kowal, Robert; Pannicke, Enrico; Prier, Marcus; Vick, Ralf; Rose, Georg; Speck, Oliver
In: ISMRM & SMRT Annual Meeting and Exhibition$an online experience : 15-20 May 2021 - Concord, CA: International Society for Magnetic Resonance in Medicine, 2021 . - 2021
MRI safety evaluation of flexible coil
Ehses, Maik; Pannicke, Enrico; Sánchez López, Juan Sebastián; Scherbel, Selina; Kowal, Robert; Hensen, Bennet; Wacker, Frank; Rose, Georg; Speck, Oliver
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 79-80
Heating measurement of different ECG cable lengths and system states
Thieme, Oliver; Bauer, Michael; Huppertz, David; Rauwolf, Thomas; Lego, Denise; Braun-Dullaeus, Rüdiger; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 69-70
Robustness evaluation of grangeat registration for prior-based reconstruction
Punzet, Daniel; Frysch, Robert; Behme, Daniel; Speck, Oliver; Rose, Georg
In: Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021, 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 7
Virtual reality-based usability laboratory for interventional MR applications
Kwapik, Remigiusz; Moritz, Julia; Hensen, Bennet; Janny, Benedikt; Pannicke, Enrico; Schott, Danny; Rose, Georg; Speck, Oliver; Wacke, Frank
In: 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 51-52 [Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021]
Flexible split-coil design for various field strengths
Kowal, Robert; Pannicke, Enrico; Prier, Marcus; Ehses, Mai; Rose, Georg; Speck, Oliver
In: Magnetic resonance materials in physics, biology and medicine - Heidelberg: Springer, 1993, Volume 34(2021), Suppl. 1, Seite S37
Integration of MR compatible bowden cables with position feedback sensors into compact microposition robotics
Eisenmann, Marcel; Fomin, Ivan; Schröder, Kerstin; Habisreuther, Tobias; Pannicke, Enrico; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 29-30
Adjusting the acquisition parameters of spherical ellipse tomosynthesis scan orbit for guiding interventional bronchoscopy
Saad, Fatima; Frysch, Robert; Pfeiffer, Tim; Nürnberger, Andreas; Lauritsch, Guenter; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 9-10 [Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021]
Educational tabletop MRI system using the open-source console for real-time acquisition (OCRA)
Prier, Marcus; Schote, David; Fomin, Ivan; Witzel, Thomas; Rose, Georg; Speck, Oliver
In: ISMRM & SMRT Annual Meeting and Exhibition$an online experience : 15-20 May 2021 - Concord, CA: International Society for Magnetic Resonance in Medicine, 2021 . - 2021
Extraction of prior knowledge basis function set for model-based perfusion reconstruction of the liver
Haseljić, Hana; Kulvait, Vojtech; Frysch, Robert; Wernecke, Thomas; Hensen, Bennet; Brüsch, Inga; Magdowski, Mathias; Wacker, Frank; Speck, Oliver; Rose, Georg
In: Konferenz: 5th Conference on Image-Guided Interventions, IGIC 2021, Magdeburg, 13-14 October 2021, 5th Conference on Image-Guided Interventions (IGIC) , 2021 - Magdeburg : [Otto-von-Guericke University Magdeburg] ; Hansen, Christian *1980-*, S. 11-12
Polymer optical fibers (POF) for motion detection in magnetic resonance imaging
Warsch, Alexander; Pannicke, Enrico; Kallweit, Jan; Jahn, Matthias; Rose, Georg
In: 5th Conference on Image-Guided Interventions (IGIC)/ Conference on Image-Guided Interventions - Magdeburg: [Otto-von-Guericke University Magdeburg], 2021; Hansen, Christian *1980-* . - 2021, S. 83-84
Book chapter
Simulation of SAR induced heating in infants undergoing 1.5 T magnetic resonance imaging
Kowal, Robert; Prier, Marcus; Pannicke, Enrico; Vick, Ralf; Rose, Georg; Speck, Oliver
In: 43rd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society (EMBC) - [Piscataway, NJ]: IEEE . - 2021, S. 3380-3384
Wireless electrocardiography and impedance cardiography devices using a network time protocol for synchronized data
Orsolini, Stefano; Pannicke, Enrico; Fomin, Ivan; Thieme, Oliver; Rose, Georg
In: 43rd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society (EMBC) - [Piscataway, NJ]: IEEE . - 2021, S. 480-483
Perception-aware losses facilitate CT denoising and artifact removal
Ghosh, Suhita; Krug, Andreas; Rose, Georg; Stober, Sebastian
In: 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS) / IEEE International Conference on Human-Machine Systems , 2021 - IEEE : IEEE, insges. 6 S. [Konferenz: IEEE 2nd International Conference on Human-Machine Systems, ICHMS, Magdeburg, Germany, 8-10 September 2021]
Peer-reviewed journal article
A novel approach to 2D/3D registration of X-ray images using Grangeats relation
Frysch, Robert; Pfeiffer, Tim; Rose, Georg
In: Medical image analysis - Amsterdam [u.a.] : Elsevier Science, Bd. 67 (2021), Artikel 101815, insges. 18 S.
Assessment of measurement precision in single-voxel spectroscopy at 7 T - toward minimal detectable changes of metabolite concentrations in the human brain in vivo
Riemann, Layla Tabea; Aigner, Christoph Stefan; Ellison, Stephen L. R.; Brühl, Rüdiger; Mekle, Ralf; Schmitter, Sebastian; Speck, Oliver; Rose, Georg; Ittermann, Bernd; Fillmer, Ariane
In: Magnetic resonance in medicine - New York, NY [u.a.] : Wiley-Liss, Bd. 87 (2022), Heft 3, S. 1119-1135
Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix Q s
Silemek, Berk; Seifert, Frank; Petzold, Johannes; Hoffmann, Werner; Pfeiffer, Harald; Speck, Oliver; Rose, Georg; Ittermann, Bernd; Winter, Lukas
In: Magnetic resonance in medicine - New York, NY [u.a.] : Wiley-Liss, Bd. 87 (2021), Heft 1, S. 509-527
Fine-tuning deep learning model parameters for improved super-resolution of dynamic MRI with prior-knowledge
Sarasaen, Chompunuch; Chatterjee, Soumick; Breitkopf, Mario; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: Artificial intelligence in medicine - Amsterdam [u.a.] : Elsevier Science, Bd. 121 (2021), Artikel 102196
RIGS - ultra-light micropositioning robotics for universal MRI guided interventions
Fomin, Ivan; Odenbach, Robert; Pannicke, Enrico; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: Current directions in biomedical engineering - Berlin: De Gruyter, Bd. 7 (2021), 1, insges. 5 S.
Dissertation
Vollautomatische Bestimmung von Hüfttotalendoprothesen-Parametern in routinemäßigen Röntgenbildern
Klebingat, Stefan; Rose, Georg; Saalfeld, Sylvia; Bertrand, Jessica
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2021, v, 171 Seiten [Literaturverzeichnis: Seite 141-157][Literaturverzeichnis: Seite 141-157]
On the application of the polychromatic statistical reconstruction technique to C-arm CT data
Bismark, Richard; Rose, Georg
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2021, 131 Seiten [Literaturverzeichnis: Seite 121-131][Literaturverzeichnis: Seite 121-131]
Data-driven beam hardening correction for cone beam computed tomography
Abdurahman, Shiras; Rose, Georg; Speck, Oliver
In: Magdeburg: Universitätsbibliothek, 2021, 1 Online-Ressource (xvii, 125 Seiten, 14,04 MB), Illustrationen
Article in conference proceedings
Two extensions of the separable footprint forward projector
Pfeiffer, Tim; Frysch, Robert; Rose, Georg
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 385-388
Spherical ellipse scan trajectory for tomosynthesis-assisted interventional bronchoscopy
Saad, Fatima; Frysch, Robert; Pfeiffer, Tim; Georgi, Jens-Christoph; Knetsch, Torsten; Casal, Roberto F.; Nürnberger, Andreas; Lauritsch, Guenter; Rose, Georg
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 352-356 [Meeting: 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 19-23 July 2021]
Software implementation of the Krylov methods based reconstruction for the 3D cone beam CT operator
Kulvait, Vojtech; Rose, Georg
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv; Schramm, Georg . - 2021, S. 313-316
ReconResNet: regularised residual learning for MR image reconstruction of undersampled cartesian and radial data
Chatterjee, Soumick; Breitkopf, Mario; Sarasaen, Chompunuch; Yassin, Hadya; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: Medical Imaging with Deep Learning - OpenReview.net . - 2021, insges. 3 S. [Konferenz: Medical Imaging with Deep Learning, MIDL 2021, Lübeck, Germany, 7. Juli 2021]
Application of time separation technique to enhance C-arm CT dynamic liver perfusion imaging
Haseljić, Hana; Kulvait, Vojtech; Frysch, Robert; Hensen, Bennet; Wacker, Frank; Rose, Georg; Wernecke, Thomas
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 264-268
Prior-aided volume of interest CBCT image reconstruction
Punzet, Daniel; Frysch, Robert; Speck, Oliver; Rose, Georg
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 76-80
Trajectory upsampling for sparse conebeam projections using convolutional neural networks
Ernst, Philipp; Rak, Marko; Hansen, Christian; Rose, Georg; Nürnberger, Andreas
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 285-288 [Meeting: 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 19-23 July 2021]
Sparse view deep differentiated backprojection for circular trajectories in CBCT
Ernst, Philipp; Rose, Georg; Nürnberger, Andreas
In: Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine$xhEditors: Georg Schramm, Ahmadreza Rezaei, Kris Thielemans and Johan Nuyts - arXiv ; Schramm, Georg . - 2021, S. 463-466 [Meeting: 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 19-23 July 2021]
Non-peer-reviewed journal article
Sinogram upsampling using primal-dual UNet for undersampled CT and radial MRI reconstruction
Ernst, Philipp; Chatterjee, Soumick; Rose, Georg; Speck, Oliver; Nürnberger, Andreas
In: De.arxiv.org - [S.l.] : Arxiv.org . - 2021, Artikel 2112.13443, insges. 20 S.
Noise and dose reduction in CT brain perfusion acquisition by projecting time attenuation curves onto lower dimensional spaces
Kulvait, Vojtech; Hoelter, Philipp; Dörfler, Arnd; Rose, Georg
In: De.arxiv.org - [S.l.]: Arxiv.org . - 2021, insges. 4 S.
ReconResNet: regularised residual learning for MR image reconstruction of undersampled cartesian and radial data
Chatterjee, Soumick; Breitkopf, Mario; Sarasaen, Chompunuch; Yassin, Hadya; Podishetti, Ranadheer; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: De.arxiv.org - [S.l.] : Arxiv.org . - 2021, S. 1-15, Artikel 2103.09203
2020
Abstract
Epipolar-constrained optical flow triangulation for the interior problem in CBCT
Punzet, Daniel; Frysch, Robert; Khosroshahi, Elnaz; Beuing, Oliver; Speck, Oliver; Rose, Georg
In: Online-programm - IEEE, 2020, 2020, Poster panel: 179
A robot control platform for motor impaired people
Will, Matthias; Peter, T.; Hanses, Magnus; Elkmann, Norbert; Rose, Georg; Hinrichs, Hermann; Reichert, Christoph
In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, 2020, paper TuBT1.4
Book chapter
Nullspace-constrained modifications of under-sampled interventional CT images using instrument-specific prior information
Saad, Fatima; Frysch, Robert; Kulvait, Vojtěch; Punzet, Daniel; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Bd. 11312 (2020), S. 888-894
A generalized method for computation of n-dimensional Radon transforms
Frysch, Robert; Pfeiffer, Tim; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Bd. 11312 (2020), S. 610-616
3D-localization of anatomic structures in tomographic images from optical flow of projection images
Punzet, Daniel; Frysch, Robert; Beuing, Oliver; Speck, Oliver; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Bd. 11312 (2020), S. 654-659
Peer-reviewed journal article
Gait event detection for stroke patients during robot-assisted gait training
Schicketmueller, Andreas; Lamprecht, Juliane; Hofmann, Marc; Sailer, Michael; Rose, Georg
In: Sensors - Basel: MDPI, 2001, Volume 20.2020, issue 12, article 3399, 12 Seiten
Dissertation
Verfahren zur Erhöhung der visuellen Wahrnehmung neurovaskulärer Stents unter Röntgendurchleuchtung
Hoffmann, Thomas; Rose, Georg; Juhre, Daniel
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2020, XIV, 108 Seiten [Literaturverzeichnis: Seite 92-97][Literaturverzeichnis: Seite 92-97]
Article in conference proceedings
Overcoming truncation artifacts caused by the patient table in polyenergetic statistical reconstruction on clinical C-arm CT data
Bismark, Richard; Beuing, Oliver; Rose, Georg
In: CT Meeting 2020 proceedings/ International Conference on Image Formation in X-Ray Computed Tomography - [Nürnberg]: [Society of High Performance Computational Imaging (SHPCI) e.V.]; Kachelrieß, Marc *1969-* . - 2020, S. 348-351
Non-peer-reviewed journal article
Exploration of interpretability techniques for deep COVID-19 classification using chest X-ray images
Chatterjee, Soumick; Saad, Fatima; Sarasaen, Chompunuch; Ghosh, Suhita; Khatun, Rupali; Radeva, Petia; Rose, Georg; Stober, Sebastian; Speck, Oliver; Nürnberger, Andreas
In: De.arxiv.org - [S.l.] : Arxiv.org - 2020, article 2006.02570, insgesamt 16 Seiten
2019
Abstract
Reconstruction of difference images using the nullspace-constrained modification scheme and instrument-specific prior information
Saad, Fatima; Frysch, Robert; Kulvait, Vojtěch; Punzet, Daniel; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019, insges. 2 S.
Estimating the patient extent from truncated CBCT projections
Punzet, Daniel; Frysch, Robert; Beuing, Oliver; Speck, Oliver; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019, S. 40
Comparison of optimization methods for few view CT using deep learning
Ernst, Philipp; Nürnberger, Andreas; Rose, Georg
In: 4th Image-Guided Interventions Conference - Mannheim . - 2019, insges. 2 S. [Konferenz: 4th Image-Guided Interventions Conference, Mannheim, Germany, November 4 - 5, 2019]
Comparison between the usage of same and different variable density undersampling patterns for Deep Learning based MRI Reconstruction
Chatterjee, Soumick; Breitkopf, Mario; Sarasaen, Chompunuch; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: 4th Image-Guided Interventions Conference - Mannheim . - 2019 [Konferenz: 4th Image-Guided Interventions Conference, Mannheim, Germany, November 4 - 5, 2019]
Patiententisch zur automatisierten isozentrischen CT-Bildgebung
Leopold, Mathias; Hoffmann, Thomas; Weiß, Tim; Nguyen, Benny; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019
The overview of the edge detection algorithms for the liver segmentation
Haseljić, Hana; Kulvait, Vojtech; Rose, Gerd
In: Konferenz: 4th Image-Guided Interventions Conference, Mannheim, Germany, November 4 - 5, 2019, 4th Image-Guided Interventions Conference - Mannheim . - 2019
Konzeptstudie eines interventionellen Computertomographen
Sarasaen, Chompunuch; Chatterjee, Soumick; Breitkopf, Mario; Rose, Georg; Speck, Oliver
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019
CTRS - a 3D reconstruction software for cone beam and multi-slice CT
Abdurahman, Shiras; Frysch, Robert; Pfeiffer, Tim; Bismark, Richard; Beuing, Oliver; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019, insges. 1 S.
Generating breathing deformation model from low resolution 4D MRI
Sarasaen, Chompunuch; Chatterjee, Soumick; Breitkopf, Mario; Rose, Georg; Speck, Oliver
In: 4th Image-Guided Interventions Conference - Mannheim . - 2019 [Konferenz: 4th Image-Guided Interventions Conference, Mannheim, Germany, November 4 - 5, 2019]
Motion compensation in flat panel CT using a prior image
Pfeiffer, Tim; Frysch, Robert; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019, S. 54
Direct grangeat-based CT reconstruction for arbitrary scan trajectories and detector configurations
Frysch, Robert; Pfeiffer, Tim; Rose, Georg
In: 4th Image-Guided Interventions Conference: digitalization in medicine : November 4th-5th 2019, UMM, Mannheim - Mannheim, 2019 . - 2019, S. 52
Book chapter
Efficient nullspace-constrained modifications of incompletely sampled CT images
Frysch, Robert; Bannasch, Sebastian; Kulvait, Vojtech; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110722U
Scatter correction using pair-wise fan beam consistency conditions
Abdurahman, Shiras; Frysch, Robert; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110722I
Beam hardening correction using pair-wise fan beam consistency conditions
Abdurahman, Shiras; Frysch, Robert; Melnik, Steffen; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110721T
A complete scheme of empirical beam hardening correction using Grangeat consistency condition
Abdurahman, Shiras; Frysch, Robert; Bismark, Richard; Beuing, Oliver; Rose, Georg
In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)/ IEEE Nuclear Science Symposium - [Piscataway, NJ]: IEEE . - 2019, S. 1-5
Truncation artifacts caused by the patient table in polyenergetic statistical reconstruction on real C-arm CT data
Bismark, Richard; Beuing, Oliver; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), article 110722G
A review of the image segmentation and registration methods in liver motion correction in C-arm perfusion imaging
Haseljic, Hana; Frysch, Robert; Kulvait, Vojtěch; Rose, Georg
In: ICAT 2019 / International Conference on Information, Communication and Automation Technologies , 2019 - [Piscataway, NJ] : IEEE
Breathing deformation model - application to multi-resolution abdominal MRI
Sarasaen, Chompunuch; Chatterjee, Soumick; Breitkopf, Mario; Iuso, Domenico; Rose, Georg; Speck, Oliver
In: 41st Annual International Conferences of the IEEE Engineering in Medicine and Biology Society (EMBC) - [Piscataway, NJ] : IEEE . - 2019 [Konferenz: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Berlin, Germany, 23-27 July 2019]
Analysis of scatter artifacts in cone-beam CT due to scattered radiation of metallic objects
Iuso, Domenico; Frysch, Robert; Pfeiffer, Tim; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110721K
Breathing deformation model - application to multi-resolution abdominal MRI
Sarasaen, Chompunuch; Chatterjee, Soumick; Breitkopf, Mario; Iuso, Domenico; Rose, Georg; Speck, Oliver
In: Biomedical engineering ranging from wellness to intensive care / IEEE Engineering in Medicine and Biology Society , 2019 - [Piscataway, NJ] : IEEE ; Barbieri, Ricardo, S. 2769-2772 [Konferenz: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Berlin, Germany, 23-27 July 2019]
CTL: modular open-source C++-library for CT-simulations
Pfeiffer, Tim; Frysch, Robert; Bismark, Richard; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110721L
GCC-based extrapolation of truncated CBCT data with dimensionality-reduced extrapolation models
Punzet, Daniel; Frysch, Robert; Pfeiffer, Tim; Beuing, Oliver; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 1107227
Reduction of beam hardening induced metal artifacts using consistency conditions
Abdurahman, Shiras; Frysch, Robert; Rose, Georg
In: Proceedings of SPIE/ SPIE - Bellingham, Wash.: SPIE, Volume 11072 (2019), Art. 110721S
Peer-reviewed journal article
Patient monitoring during magnetic resonance imaging exams by means of ballistocardiography
Meyer zu Hartlage, Karen; Pannicke, Enrico; Orsolini, Stefano; Rose, Georg; Vick, Ralph; Krug Passand, Johannes
In: Computing in Cardiology, September 8-11, 2019, Singapore/ Computing in Cardiology - Piscataway, NJ: IEEE; Pickett, Christine . - 2019, insges. 4 S.
Reduction of beam hardening artifacts on real C-arm CT data using polychromatic statistical image reconstruction
Bismark, Richard; Frysch, Robert; Abdurahman, Shiras; Beuing, Oliver; Blessing, Manuel; Rose, Georg
In: Zeitschrift für medizinische Physik - Amsterdam [u.a.]: Elsevier, Bd. 30 (2020), 1, S. 40-50, insges. 11 S.
Dissertation
Prospective motion correction for high resolution gradient recalled echo-based magnetic resonance imaging at ultra-high field
Mattern, Hendrik; Rose, Georg; Speck, Oliver
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2019, xv, 108 Seiten [Literaturverzeichnis: Seite 95-108][Literaturverzeichnis: Seite 95-108]
Die Zeitseparationstechnik - eine effiziente modellbasierte Rekonstruktionstechnik für die computertomographische Perfusionsbildgebung
Bannasch, Sebastian; Warnecke, Gerald; Rose, Georg; Iske, Armin
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik 2019, 185 Seiten [Literaturverzeichnis: Seite 167-175][Literaturverzeichnis: Seite 167-175]
Article in conference proceedings
A deep learning approach for reconstruction of undersampled Cartesian and Radial data
Chatterjee, Soumick; Breitkopf, Mario; Sarasaen, Chompunuch; Rose, Georg; Nürnberger, Andreas; Speck, Oliver
In: ResearchGATE - Cambridge, Mass. : ResearchGATE Corp. . - 2019 [Konferenz: ESMRMB 2019, Rotterdam]
2018
Abstract
Noise reduction in perfusion imaging using data-driven prior knowledge
Bannasch, Sebastian; Eckel, Christina; Frysch, Robert; Beuing, Oliver; Warnecke, Gerald; Rose, Georg
In: Clinical neuroradiology - München : Urban & Vogel , 2006 - Vol. 28.2018, Suppl. 1, Abstr. 288, S. S100-S101
Book chapter
Extrapolation of truncated C-arm CT data using grangeat-based consistency measures
Punzet, Daniel; Frysch, Robert; Rose, Georg
In: 5th Meeting, Salt Lake City, 2018 / International Conference on Image Formation in X-Ray Computed Tomography , 2018 - [Nürnberg] : [Society of High Performance Computational Imaging (SHPCI) e.V.] ; Noo, Frédérico, S. 218-221
UWB localization using adaptive covariance Kalman Filter based on sensor fusion
Briese, Danilo; Kunze, Holger; Rose, Georg
In: 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB) / IEEE International Conference on Ubiquitous Wireless Broadband , 2017 - [Piscataway, NJ] : IEEE ; IEEE International Conference on Ubiquitous Wireless Broadband (17.:2017) . - 2018, insges. 7 S.
Peer-reviewed journal article
P62. SSVEP controlled BCI inferring complex tasks from low-level-commands
Will, Matthias; Pfeiffer, Tim; Heinze, Nicolai; Rose, Georg
In: Clinical neurophysiology - Amsterdam [u.a.] : Elsevier Science - Vol. 129.2018, 8, S. e92-e93
A newly developed mm-wave sensor for detecting plaques of arterial vessels
Detert, Markus; Wagner, David; Wessel, Jan; Ramzan, Rabia; Nimphius, Wilhelm; Ramaswamy, Anette; Guha, Subhajit; Wenger, Christian; Jamal, Farabi; Eissa, Mohammed; Schumann, Ulrich; Schmidt, Betram; Rose, Georg; Dahl, Christoph; Rolfes, Ilona; Notzon, Gordon; Baer, Christoph; Musch, Thomas; Vogt, Sebastian
In: The thoracic and cardiovascular surgeon - Stuttgart : Thieme, Bd. 66 (2018), 1, S. 91-98
Time separation technique - accurate solution for 4D C-Arm-CT perfusion imaging using a temporal decomposition model
Bannasch, Sebastian; Frysch, Robert; Pfeiffer, Tim; Warnecke, Gerald; Rose, Georg
In: Medical physics - Hoboken, NJ : Wiley, Bd. 45 (2018), 3, S. 1080-1092
A compact and accurate set of basis functions for model-based reconstructions
Eckel, Christina; Bannasch, Sebastian; Frysch, Robert; Rose, Georg
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 4 (2018), 1, S. 323-326
Hidden Markov model based continuous decoding of finger movements with prior knowledge incorporation using bi-gram models
Pfeiffer, Tim; Knight, Robert T.; Rose, Georg
In: Biomedical physics & engineering express - Bristol : IOP Publ. - Vol. 4.2018, 2, Art. 025007, insgesamt 15 S.
Percutaneous MR-guided interventions using an optical Moiré Phase tracking system - initial results
Kägebein, Urte; Godenschweger, Frank; Armstrong, Brain S. R.; Rose, Georg; Wacker, Frank K.; Speck, Oliver; Hensen, Bennet
In: PLOS ONE - San Francisco, California, US: PLOS, 2006, Vol. 13.2018, 10, Art. e0205394, insgesamt 12 S.
Beam hardening correction using cone beam consistency conditions
Abdurahman, Shiras; Frysch, Robert; Bismark, Richard; Melnik, Steffen; Beuing, Oliver; Rose, Georg
In: IEEE transactions on medical imaging / Institute of Electrical and Electronics Engineers - New York, NY : Institute of Electrical and Electronics Engineers, Bd. 37 (2018), 10, S. 2266-2277
Enhancement of region of interest CT reconstructions through multimodal data
Schote, David; Pfeiffer, Tim; Rose, Georg
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 4 (2018), 1, S. 331-335
Concept of a multi sensor and freely configurable patient table for CT applications
Leopold, Mathias; Hoffmann, Thomas; Opfermann, Klemens; Pannicke, Enrico; Rose, Georg; Woschke, Elmar
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 4 (2018), Heft 1, S. 501-504
Prospective motion correction enables highest resolution time-of-flight angiography at 7T
Mattern, Hendrik; Sciarra, Alessandro; Godenschweger, Frank; Stucht, Daniel; Lüsebrink, Falk; Rose, Georg; Speck, Oliver
In: Magnetic resonance in medicine: MRM ; an official journal of the International Society for Magnetic Resonance in Medicine - New York, NY [u.a.]: Wiley-Liss, 1984, Bd. 80.2018, 1, S. 248-258
Dissertation
MRT-geführte Ablation mit Hilfe des optischen Moiré Phase Trackingsystems
Kägebein, Urte; Rose, Georg; Speck, Oliver
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2018, XII, 228 Seiten [Literaturverzeichnis: Seite 183-199][Literaturverzeichnis: Seite 183-199]
Toward a robust electromagnetic tracking system for use in medical applications
Li, Mengfei; Rose, Georg; Hansen, Christian
In: Magdeburg: Otto-von-Guericke-Universität, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2018, xii, 133 Seiten - (Res electricae Magdeburgenses; Band 73), ISBN: 978-3-944722-66-5
2017
Abstract
Bewegungskompensation für C-Arm-CT mithilfe von Grangeat-Konsistenzbedingungen
Frysch, Robert; Beuing, Oliver; Rose, Georg
In: Clinical neuroradiology - München: Urban & Vogel, 2006, Vol. 27.2017, Suppl. 1, S. S100-S101
Consistency measure based extrapolation of truncated C-arm CT data in cone-beam geometry
Hellge-Theune, Daniel; Frysch, Robert; Rose, Georg
In: Recent progress and developments: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, November 6 and 7, 2017, Magdeburg, Germany : abstract book - Magdeburg, 2017 . - 2017, S. 25-26
Beam hardening correction for bi-material objects using Grangeat-based consistency measure
Abdurahman, Shiras; Frysch, Robert; Bismark, Richard; Friebe, Michael; Beuing, Oliver; Rose, Georg
In: Online-Abstract submission - IEEE, 2017, 2017, Abstract M-10-6
Dynamische Perfusionsbildgebung mit C-Arm-System
Bannasch, Sebastian; Warnecke, Gerald; Rose, Georg
In: Clinical neuroradiology - München: Urban & Vogel, 2006, Vol. 27.2017, Suppl. 1, Art. 311, S. S46
Virtuelle Erhöhung der Röntgensichtbarkeit neurovaskulärer Stents in der Radiographie
Hoffmann, Thomas; Juhre, Daniel; Cattaneo, Giorgio; Rose, Georg; Beuing, Oliver
In: Recent progress and developments - Magdeburg - 2017, Abs. ID 35, Seite 25 [Konferenz: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, Magdeburg, Germany, November 6 and 7, 2017]
Beam hardening correction using Grangeat-based consistency measure
Abdurahman, Shiras; Frysch, Robert; Bismark, Richard; Beuing, Oliver; Rose, Georg
In: Recent progress and developments: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, November 6 and 7, 2017, Magdeburg, Germany : abstract book - Magdeburg, 2017 . - 2017, S. 26
Strahlaufhärtungskorrektur mithilfe von Grangeat-Konsistenzbedingungen für Kegelstrahl-CT
Abdurahman, Shiras; Frysch, Robert; Bismark, Richard; Beuing, Oliver; Friebe, Michael; Rose, Georg
In: Clinical neuroradiology - München: Urban & Vogel, 2006, Vol. 27.2017, Suppl. 1, Art. 359, S. S102
Robust computation of perfusion maps for spatiotemporal model-based CT reconstructionsons
Bannasch, Sebastian; Warnecke, Gerald; Rose, Georg
In: Recent progress and developments: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, November 6 and 7, 2017, Magdeburg, Germany : abstract book - Magdeburg, 2017, 2017, Art. ID47, S. 31
Iterative algebraic reconstruction of truncated projections
Frysch, Robert; Rose, Georg
In: Recent progress and developments: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, November 6 and 7, 2017, Magdeburg, Germany : abstract book - Magdeburg, 2017 . - 2017, S. 32
Peer-reviewed journal article
A simulator for advanced analysis of a 5-DOF EM tracking systems in use for image-guided surgery
Li, Mengfei; Hansen, Christian; Rose, Georg
In: International journal of computer assisted radiology and surgery - Berlin : Springer, Bd. 12 (2017), Heft 12, S. 2217-2229
Evaluation of exposure to (ultra) high static magnetic fields during activities around human MRI scanners
Fatahi, Mahsa; Karpowicz, Jolanta; Gryz, Krzysztof; Fattahi, Amirmohammad; Rose, Georg; Speck, Oliver
In: Magnetic resonance materials in physics, biology and medicine - Heidelberg : Springer, Bd. 30 (2017), Heft 3, S. 255-264
ECG derived respiration - comparison of time-domain approaches and application to altered breathing patterns of patients with schizophrenia
Schmidt, Marcus; Schumann, Andy; Müller, Jonas; Bär, Karl-Jürgen; Rose, Georg
In: Physiological measurement - Bristol: IOP Publ., Bd. 38 (2017), 4, S. 601-615
A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery
Li, Mengfei; Hansen, Christian; Rose, Georg
In: International journal of computer assisted radiology and surgery - Berlin : Springer, Bd. 13 (2017), Heft 9, S. 1621-1633
Dissertation
Statistische Methoden zur Filterung und Analyse von EKG-Signalen während der Magnetresonanztomographie
Schmidt, Marcus Harald; Rose, Georg; Speck, Oliver
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2017, ii, 257 Seiten [Literaturverzeichnis: Seite 185-212]
Ultra-high field MRI bio-effects and safety assessment - a multidisciplinary approach
Fatahi, Mahsa; Rose, Georg; Speck, Oliver
In: Magdeburg, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2017, xii, 142 Seiten [Literaturverzeichnis: Seite 118-140; Titel auf dem Umschlag: Ultra-high field MRI safety and bio-effects assessment][Literaturverzeichnis: Seite 118-140; Titel auf dem Umschlag: Ultra-high field MRI safety and bio-effects assessment]
Article in conference proceedings
A database of electrocardiogram signals acquired in different magnetic resonance imaging scanners
Krug, Johannes; Schmidt, Marcus; Rose, Georg; Friebe, Michael
In: Konferenz: Computing in cardiology, Cinc 2017, Rennes, France, September 24-27, 2017, ResearchGATE - Cambridge, Mass. : ResearchGATE Corp. . - 2017
Ray-density weighted algebraic reconstruction for volume-of-interest CT
Frysch, Robert; Bismark, Richard; Maier, Andreas; Rose, Georg
In: Fully 3D Conference 2017: the 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine held in Xi'an Shaanxi, China, from June 18 to June 23, 2017. - Xi'an Shaanxi . - 2017, S. 556-559
Hip implant wear measurement in X-Ray images using 2D-3D-registration
Klebingat, Stefan; Rose, Georg
In: Recent progress and developments: 3rd Conference on Image-Guided Interventions & Focus Neuroradiologie, November 6 and 7, 2017, Magdeburg, Germany : abstract book - Magdeburg . - 2017
2016
Abstract
Word networks for BCI decoding purposes
Pfeiffer, Tim; Knight, Robert T.; Rose, Georg
In: BCI Meeting 2016 - BCI Society, 2016 . - 2016, S. 161
Patient Access 2.0 - concept for a dedicated patient table for interventional MRI
Grundmann, Mandy; Doer, Emilia; Pucula, Dominik; Hensen, Bennet; Wacker, Frank; Rose, Georg
In: 11th International Interventional MRI Symposium: October 07-08, 2016, Baltimore, Maryland - Baltimore, 2016 . - 2016, insges. 3 S.
A study of ECG sampling frequency and its impact on the functionality of EDR methods
Schmidt, Marcus; Schumann, Andy; Bär, Karl-Jürgen; Rose, Georg
In: Biomedical engineering - Berlin [u.a.]: de Gruyter, 1998, Vol. 61.2016, Suppl. 1, S. S59
A compaqct algorithm for a model-based perfusion reconstruction technique
Bannasch, Sebastian; Warnecke, Gerald; Rose, Georg
In: IMA Conference on Numerical Linear Algebra und Optimization: Wednesday 7 - Friday 9 September 2016, University of Birmingham ; abstracts book and delegate list - Birmingham: Institut of Mathematics & its Applications, 2016 . - 2016, S. 36-37
Book chapter
Free interventional view - a new approach for reducing superpositions in 2D DSA radiography
Hoffmann, Thomas; Boese, Axel; Rose, Georg; Skalej, Martin
In: CURAC 2016 Tagungsband: 15. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. : 29.09.-01.10.2016, Bern / Juan Ansó, Kate Gerber, Nicolas Gerber, Marius Schwalbe, Raphael Szitman, Stefan Weber, Tom Williamson, Wilhelm Wimmer, Arya Nabavi (Hrsg.)/ Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie - Uelvesbüll: Der Andere Verlag; Ansó, Juan, (2016), insges. 5 S.
Reduction of beam hardening artifacts on real C-Arm CT data using statistical polyenergetic image reconstruction
Bismark, Richard; Frysch, Robert; Rose, Georg
In: CT-Meeting 2016 - Bamberg; Kachelrieß, Marc *1969-* . - 2016, S. 573-576
Peer-reviewed journal article
Radiopacity assessment of neurovascular implants
Hoffmann, Thomas; Gugel, Sebastian; Beuing, Oliver; Rose, Georg
In: Current directions in biomedical engineering - Berlin: De Gruyter, 2015, Bd. 2 (2016), 1, S. 533-536
Real-time QRS detection using integrated variance for ECG gated cardiac MRI
Schmidt, M.; Krug, Johannes; Rose, Georg
In: Current directions in biomedical engineering - Berlin: De Gruyter, Bd. 2 (2016), 1, S. 255-258
Reducing of gradient induced artifacts on the ECG signal during MRI examinations using Wilcoxon filter
Schmidt, Marcus; Krug, Johannes; Rose, Georg
In: Current directions in biomedical engineering - Berlin: De Gruyter, Bd. 2 (2016), 1, S. 175-178
An automatic systolic peak detector of blood pressure waveforms using 4 th order cumulants
Schmidt, Marcus; Schumann, Andy; Bär, Karl-Jürgen; Rose, Georg
In: Current directions in biomedical engineering - Berlin: De Gruyter, Bd. 2 (2016), 1, S. 251-254
Development of a skull phantom for the assessment of implant X-ray visibility
Hoffmann, Thomas; Klink, Fabian; Boese, Axel; Fischer, Karin; Beuing, Oliver; Rose, Georg
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 2 (2016), Heft 1, S. 351-354
Determining cardiac vagal threshold from short term heart rate complexity
Abou Hamdan, Rami; Schumann, Andy; Herbsleb, Marco; Schmidt, Marcus; Rose, Georg; Bär, Karl-Jürgen; Gabriel, Holger
In: Current directions in biomedical engineering - Berlin : De Gruyter, Bd. 2 (2016), Heft 1, S. 155-159
Deriving respiration from high resolution 12-channel-ECG during cycling exercise
Schumann, Andy; Schmidt, Marcus; Herbsleb, Marco; Semm, Charlotte; Rose, Georg; Bär, Karl-Jürgen; Gabriel, Holger
In: Current directions in biomedical engineering - Berlin: De Gruyter, Bd. 2 (2016), 1, S. 171-174
Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment
Börzsönyi, Tamás; Somfai, Ellák; Szabó, Balázs; Wegner, Sandra; Mier, Pascal; Rose, Georg; Stannarius, Ralf
In: New journal of physics - [Bad Honnef]: Dt. Physikalische Ges., Vol. 18.2016, Art. 093017, insgesamt 10 S.
Extracting duration information in a picture category decoding task using hidden Markov Models
Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y.; Schoenfeld, Mircea Ariel; Knight, Robert T.; Rose, Georg
In: Journal of neural engineering - Bristol: Institute of Physics Publishing, 2004, Vol. 13.2016, 2, Art. 026010, insgesamt 11 S.
Dissertation
Fusion of interventional ultrasound & X-ray
Kaiser, Markus; Rose, Georg
In: Barleben: docupoint GmbH, Dissertation Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik 2016, iii, 130 Seiten - (Res electricae Magdeburgenses; Band 71), ISBN: 978-3-944722-51-1
2015
Abstract
Redundanzbasierte Korrektur von Kopfbewegungen für C-Arm-CT von Schlaganfallpatienten
Frysch, Robert; Skalej, Martin; Rose, Georg
In: Clinical neuroradiology - München: Urban & Vogel, 2006, Vol. 25.2015, Suppl. 1, S. 79-80
Hall sensors for respiratory motion detection in MRI
Krug, Johannes; Zhang, Rui; Rose, Georg; Friebe, Michael
In: Magnetic resonance materials in physics, biology and medicine - Heidelberg: Springer, 1993, Vol. 28.2015, Suppl. 1, S. S32
Metrikanalyse zur redundanzbasierten Bewegungskompensation
Frysch, Robert; Rose, Georg
In: IGIC 2015: 2. Image-Guided Interventions Conference, 2. - 3. November 2015, Mannheim ; Abstractband - Vorträge - Mannheim, S. 16[Beitrag auf USB-Stick]
Towards an estimation of ECoG decoding results based on fully non-invasive MEG acquisition
Heinze, Nicolai; Pfeiffer, Tim; Schoenfeld, Mircea Ariel; Rose, Georg
In: Clinical neurophysiology - Amsterdam [u.a.]: Elsevier Science, 1999, Bd. 126.2015, 8, P140, S. e156-e157
Acceleration of a regularized Algebraic Reconstruction Technique evaluated with a simulation of computed tomography
Bannasch, Sebastian; Pfeiffer, Tim; Warnecke, Gerald; Rose, Georg
In: IMA Conference on Numerical Methods for Simulation: Tuesday 1 - Friday 4 September 2015, Mathematical Institute, University of Oxford ; abstracts book and delegate list - Oxford: Univ., 2015 . - 2015, S. 17
Koeffizientenbasierte Algebraische Rekonstruktions-Technik für modellbasierte Perfusionsbildgebung
Bannasch, Sebastian; Warnecke, Gerald; Rose, Georg
In: IGIC 2015: 2. Image-Guided Interventions Conference, 2. - 3. November 2015, Mannheim ; Abstractband - Vorträge - Mannheim, S. 19[Beitrag auf USB-Stick]
Due to technical reasons only 200 publications can be displayed.
View more in the research portal.
- Malottki GmbH, Halle (Saale)
- ifak Institut für Automation und Kommunikation e.V. Magdeburg
- Tonfunk Systementwicklung und Service GmbH, Falkenstein/Harz
- Ambulanz Mobile GmbH & Co. KG, Schönebeck
- Prof. B. Schmidt, IMOS, FEIT
- Primed Medizintechnik GmbH, Halberstadt
- Universitätsklinikum Gießen/Marburg GmbH
- Ruhr-Universität Bochum
- SBSK GmbH & Co. KG, Schönebeck
- Prof. Dr. Karl-Heinrich Grote, OVGU, FMB, Institut für Maschinenkonstruktion
- IHP GmbH – Leibniz Institut für innovative Mikroelektronik, Frankfurt/Oder
- 2tainment GmbH, Magdeburg
- 2tainment GmbH, Magdeburg (B. Ruzik)
- 3DQR GmbH, Magdeburg (D. Kasper, D. Anderson)
- Center for Medical Image Science and Visualization, Linköping University, (Prof. C. Lundström)
- domeprojection.com, Magdeburg (C. Steinmann)
- Dornheim Medical Images GmbH, Magdeburg (L. Dornheim)
- Forschungscampus MODAL, Zuse-Institut Berlin (ZIB), Prof. T. Conrad, Dr. S. Zachow
- Forschungsgruppe Image Processing, Prof. Dr. Sylvia Saalfeld
- Forschungsgruppe Medical Flows, PD Dr. Philipp Berg
- Harvard Medical School, Boston (Prof. R. Kikinis, Dr. T. Kapur)
- Hasomed GmbH
- IBF Servizi Spa
- Innomed S.R.L
- Institut für Strömungstechnik und Thermodynamik (ISUT), Prof. Dr. Gabor Janiga
- Jun.-Prof. Dr. Frank Ortmeier, FIN, Computer Systems in Engineering
- Leibniz-Institut für Neurobiologie Magdeburg
- Luxsonic Technologies Inc., Saskatoon, Saskatchewan, Canada (Dr. M. Wesolowski)
- MediTech Electronic GmbH, Wedemark (R. Warnke)
- metraTec GmbH, Magdeburg
- metratec GmbH, Magdeburg (K. Dannen)
- MHH, Prof. Dr. med. Frank Wacker
- MIMESIS Group, Inria Strasbourg (Prof. S. Cotin)
- MIPM GmbH, Mammendorf
- Neoscan Solutions GmbH, Magdeburg, Dr. Stefan Röll
- Otto von Guericke Universität Magdeburg
- PD Dr. R. Lucklum, FEIT, IMOS
- PergamonMED GmbH, Magdeburg
- Prof. Dr. A. Lindemann, FEIT, IESY
- Prof. Dr. C. Hansen, INF, VAR
- Prof. Dr. F. Ohl, LIN
- Prof. Dr. Hansen, INF, VAR
- Prof. Dr.med. J. Ricke, FME, Klinik für Radiologie und Nuklearmedizin
- Prof. Dr.med. M. Skalej, FME, Institut für Neuroradiologie
- Prof. Dr. Rolf Findeisen, OVGU, FEIT, Institut für Automatisierungstechnik
- Prof. Dr. R. Vick, FEIT, IMT
- Prpf. Dr. C. Hoeschen, FEIT, IMT
- Raylytic GmbH Leipzig
- Thought Technology Ltd., Montreal, Quebec (M. Cardichon)
- UCDplus GmbH, Magdeburg (N. Kempe)
- UKMD Radiologie, Magdeburg
- UniMedizin Mainz
- Universität Koblenz , Jun.-Prof. Dr. Kai Lawonn
- Universität Koblenz-Landau , Jun.-Prof. Dr. Kai Lawonn
- Universitätsklinik für Neuroradiologie, UKMD Magdeburg, Dr. Daniel Behme
- Universitätsklinik für Neuroradiologie, UKMD Magdeburg, Prof. Dr. Daniel Behme
- Universitätsklinik Leipzig
- Universitätsklinik Magdeburg, Prof. Dr. M. Schostak
- Universitätsklinik Mainz, Prof. W. Kneist
- University of Waterloo (Prof. L. Nacke)
- University of Waterloo, Prof. L. Nacke
- VRVIS ZENTRUM FUR VIRTUAL REALITY UND VISUALISIERUNG FORSCHUNGS-GMBH
- Optimierung von bildgeführten minimalinvasiven Operationen für Krebs- und Gefäßerkrankungen (insbes. Schlaganfall)
- Bereitstellung von Technologien für bildgeführte Operationen
- Telemedizin
- Transfer
Themen:
- Computertomographie (CT, CBCT, C-Arm CT), insbesondere im Operationsraum
- Rekonstruktion (FBP, iterative Verfahren, statistische Verfahren, effiziente Implementierung)
- Modellbasierte Perfusion (CT, CBCT, C-Arm CT)
- PET-Bildgebung
- Artefaktkompensation (Bewegung, Beam-Hardening, Metallartefakte, Streustrahlung)
- Bildverarbeitung (Objektlokalisierung, Segmentierung, Registrierung)
- Roboterassistenz im Operationsraum
- Instrumente für bildgeführten minimalinvasiven Operationen
- Brain-Machine-Interfaces (Klassifikation des MEG, ECoG-Signale, HMM-basierend)
- Telemedizin
- Studium und Lehre:
- Aufbau (2007), Studiengangskoordination: Master „Medical Systems Engineering“
- Bachelor (2015), Studiengangskoordination: Bachelor „Medizintechnik“
- Aufbau 2016, Mitwirkung in Kooperation mit der LIAM GmbH: Weiterbildungsprogramm für die Industrie „Medizinische Bildgebung kompakt“
- Bildgebende Systeme in der Medizin
- Bildgeführte Operationstechniken
- Röntgenbildgebung
- Computertomographie (CT, CBCT, C-Arm CT),
- Rekonstruktion (CT: FBP, iterative, statistische; PET/SPECT)
- Trainings, Experimente und Messungen im Angiographielabor (Siemens Zeego)
- Trainings, Experimente und Messungen am interventionellen 3T MRT (Siemens Skyra)
- Telemedizin in der klinischen Schlaganfallversorgung
- Telemedizin im Krankenwagen
As a post-doc in the Department for Neurology he has been working on brain research, modeling the behavior of cultured hippocampal neuron-networks. A second focus was development of strategies for stroke management. In 1995 he moved to industrial research, becoming member of the Philips Research Laboratories in Aachen, Germany - working in the area of tomographic and functional imaging. He also continued his work on stroke management focusing on clinical decision support systems and telemedicine applications. He managed several industrial projects, partially distributed over three continents.
Since 2006 he is Full Professor and chair for Healthcare Telematics & Medical Engineering at the Otto-von-Guericke-University in Magdeburg, Germany. The main research areas are: medical imaging, especially for interventions, medical electronics, brain-machine-interfaces.
In 2012, together with three colleagues, he received the Otto-von-Guericke Research Award for his successful research and the development of the medical engineering focus at the university.
Together with his colleagues, he was in charge of raising research funding of in total around 70 million euros.
Prof. Rose has been an elected senator of the faculty since 2016 and an elected inter-faculty senator of the university since 2020